mosesdecoder/moses/LexicalReorderingTable.cpp

722 lines
20 KiB
C++

#include "LexicalReorderingTable.h"
#include "InputFileStream.h"
//#include "LVoc.h" //need IPhrase
#include "StaticData.h"
#include "moses/TranslationModel/PhraseDictionary.h"
#include "GenerationDictionary.h"
#include "TargetPhrase.h"
#include "TargetPhraseCollection.h"
#ifndef WIN32
#include "CompactPT/LexicalReorderingTableCompact.h"
#endif
namespace Moses
{
/*
* local helper functions
*/
//cleans str of leading and tailing spaces
std::string auxClearString(const std::string& str)
{
int i = 0, j = str.size()-1;
while(i <= j) {
if(' ' != str[i]) {
break;
} else {
++i;
}
}
while(j >= i) {
if(' ' != str[j]) {
break;
} else {
--j;
}
}
return str.substr(i,j-i+1);
}
void auxAppend(IPhrase& head, const IPhrase& tail)
{
head.reserve(head.size()+tail.size());
for(size_t i = 0; i < tail.size(); ++i) {
head.push_back(tail[i]);
}
}
/*
* functions for LexicalReorderingTable
*/
LexicalReorderingTable* LexicalReorderingTable::LoadAvailable(const std::string& filePath, const FactorList& f_factors, const FactorList& e_factors, const FactorList& c_factors)
{
//decide use Compact or Tree or Memory table
#ifdef HAVE_CMPH
if(FileExists(filePath + ".minlexr")) {
LexicalReorderingTable *compactLexr =
LexicalReorderingTableCompact::CheckAndLoad(filePath + ".minlexr", f_factors, e_factors, c_factors);
if(compactLexr)
return compactLexr;
}
#endif
if(FileExists(filePath+".binlexr.idx")) {
//there exists a binary version use that
return new LexicalReorderingTableTree(filePath, f_factors, e_factors, c_factors);
} else {
//use plain memory
return new LexicalReorderingTableMemory(filePath, f_factors, e_factors, c_factors);
}
}
/*
* functions for LexicalReorderingTableMemory
*/
LexicalReorderingTableMemory::LexicalReorderingTableMemory(
const std::string& filePath,
const std::vector<FactorType>& f_factors,
const std::vector<FactorType>& e_factors,
const std::vector<FactorType>& c_factors)
: LexicalReorderingTable(f_factors, e_factors, c_factors)
{
LoadFromFile(filePath);
}
LexicalReorderingTableMemory::~LexicalReorderingTableMemory()
{
}
std::vector<float> LexicalReorderingTableMemory::GetScore(const Phrase& f,
const Phrase& e,
const Phrase& c)
{
//rather complicated because of const can't use []... as [] might enter new things into std::map
//also can't have to be careful with words range if c is empty can't use c.GetSize()-1 will underflow and be large
TableType::const_iterator r;
std::string key;
if(0 == c.GetSize()) {
key = MakeKey(f,e,c);
r = m_Table.find(key);
if(m_Table.end() != r) {
return r->second;
}
} else {
//right try from large to smaller context
for(size_t i = 0; i <= c.GetSize(); ++i) {
Phrase sub_c(c.GetSubString(WordsRange(i,c.GetSize()-1)));
key = MakeKey(f,e,sub_c);
r = m_Table.find(key);
if(m_Table.end() != r) {
return r->second;
}
}
}
return Scores();
}
void LexicalReorderingTableMemory::DbgDump(std::ostream* out) const
{
TableType::const_iterator i;
for(i = m_Table.begin(); i != m_Table.end(); ++i) {
*out << " key: '" << i->first << "' score: ";
*out << "(num scores: " << (i->second).size() << ")";
for(size_t j = 0; j < (i->second).size(); ++j) {
*out << (i->second)[j] << " ";
}
*out << "\n";
}
};
std::string LexicalReorderingTableMemory::MakeKey(const Phrase& f,
const Phrase& e,
const Phrase& c) const
{
/*
std::string key;
if(!m_FactorsF.empty()){
key += f.GetStringRep(m_FactorsF);
}
if(!m_FactorsE.empty()){
if(!key.empty()){
key += " ||| ";
}
key += e.GetStringRep(m_FactorsE);
}
*/
return MakeKey(auxClearString(f.GetStringRep(m_FactorsF)),
auxClearString(e.GetStringRep(m_FactorsE)),
auxClearString(c.GetStringRep(m_FactorsC)));
}
std::string LexicalReorderingTableMemory::MakeKey(const std::string& f,
const std::string& e,
const std::string& c) const
{
std::string key;
if(!f.empty()) {
key += f;
}
if(!m_FactorsE.empty()) {
if(!key.empty()) {
key += "|||";
}
key += e;
}
if(!m_FactorsC.empty()) {
if(!key.empty()) {
key += "|||";
}
key += c;
}
return key;
}
void LexicalReorderingTableMemory::LoadFromFile(const std::string& filePath)
{
std::string fileName = filePath;
if(!FileExists(fileName) && FileExists(fileName+".gz")) {
fileName += ".gz";
}
InputFileStream file(fileName);
std::string line(""), key("");
int numScores = -1;
std::cerr << "Loading table into memory...";
while(!getline(file, line).eof()) {
std::vector<std::string> tokens = TokenizeMultiCharSeparator(line, "|||");
int t = 0 ;
std::string f(""),e(""),c("");
if(!m_FactorsF.empty()) {
//there should be something for f
f = auxClearString(tokens.at(t));
++t;
}
if(!m_FactorsE.empty()) {
//there should be something for e
e = auxClearString(tokens.at(t));
++t;
}
if(!m_FactorsC.empty()) {
//there should be something for c
c = auxClearString(tokens.at(t));
++t;
}
//last token are the probs
std::vector<float> p = Scan<float>(Tokenize(tokens.at(t)));
//sanity check: all lines must have equall number of probs
if(-1 == numScores) {
numScores = (int)p.size(); //set in first line
}
if((int)p.size() != numScores) {
TRACE_ERR( "found inconsistent number of probabilities... found " << p.size() << " expected " << numScores << std::endl);
exit(0);
}
std::transform(p.begin(),p.end(),p.begin(),TransformScore);
std::transform(p.begin(),p.end(),p.begin(),FloorScore);
//save it all into our map
m_Table[MakeKey(f,e,c)] = p;
}
std::cerr << "done.\n";
}
/*
* functions for LexicalReorderingTableTree
*/
LexicalReorderingTableTree::LexicalReorderingTableTree(
const std::string& filePath,
const std::vector<FactorType>& f_factors,
const std::vector<FactorType>& e_factors,
const std::vector<FactorType>& c_factors)
: LexicalReorderingTable(f_factors, e_factors, c_factors), m_UseCache(false), m_FilePath(filePath)
{
m_Table.reset(new PrefixTreeMap());
m_Table->Read(m_FilePath+".binlexr");
}
LexicalReorderingTableTree::~LexicalReorderingTableTree()
{
}
Scores LexicalReorderingTableTree::GetScore(const Phrase& f, const Phrase& e, const Phrase& c)
{
if( (!m_FactorsF.empty() && 0 == f.GetSize())
|| (!m_FactorsE.empty() && 0 == e.GetSize())) {
//NOTE: no check for c as c might be empty, e.g. start of sentence
//not a proper key
// phi: commented out, since e may be empty (drop-unknown)
//std::cerr << "Not a proper key!\n";
return Scores();
}
CacheType::iterator i;;
if(m_UseCache) {
std::pair<CacheType::iterator, bool> r = m_Cache.insert(std::make_pair(MakeCacheKey(f,e),Candidates()));
if(!r.second) {
return auxFindScoreForContext((r.first)->second, c);
}
i = r.first;
} else if(!m_Cache.empty()) {
//although we might not be caching now, cache might be none empty!
i = m_Cache.find(MakeCacheKey(f,e));
if(i != m_Cache.end()) {
return auxFindScoreForContext(i->second, c);
}
}
//not in cache go to file...
Scores score;
Candidates cands;
m_Table->GetCandidates(MakeTableKey(f,e), &cands);
if(cands.empty()) {
return Scores();
}
if(m_FactorsC.empty()) {
CHECK(1 == cands.size());
return cands[0].GetScore(0);
} else {
score = auxFindScoreForContext(cands, c);
}
//cache for future use
if(m_UseCache) {
i->second = cands;
}
return score;
};
Scores LexicalReorderingTableTree::auxFindScoreForContext(const Candidates& cands, const Phrase& context)
{
if(m_FactorsC.empty()) {
CHECK(cands.size() <= 1);
return (1 == cands.size())?(cands[0].GetScore(0)):(Scores());
} else {
std::vector<std::string> cvec;
for(size_t i = 0; i < context.GetSize(); ++i) {
/* old code
std::string s = context.GetWord(i).ToString(m_FactorsC);
cvec.push_back(s.substr(0,s.size()-1));
*/
cvec.push_back(context.GetWord(i).GetString(m_FactorsC, false));
}
IPhrase c = m_Table->ConvertPhrase(cvec,TargetVocId);
IPhrase sub_c;
IPhrase::iterator start = c.begin();
for(size_t j = 0; j <= context.GetSize(); ++j, ++start) {
sub_c.assign(start, c.end());
for(size_t cand = 0; cand < cands.size(); ++cand) {
IPhrase p = cands[cand].GetPhrase(0);
if(cands[cand].GetPhrase(0) == sub_c) {
return cands[cand].GetScore(0);
}
}
}
return Scores();
}
}
/*
void LexicalReorderingTableTree::DbgDump(std::ostream* pout){
std::ostream& out = *pout;
//TODO!
}
*/
void LexicalReorderingTableTree::InitializeForInput(const InputType& input)
{
ClearCache();
if(ConfusionNet const* cn = dynamic_cast<ConfusionNet const*>(&input)) {
Cache(*cn);
} else if(Sentence const* s = dynamic_cast<Sentence const*>(&input)) {
// Cache(*s); ... this just takes up too much memory, we cache elsewhere
DisableCache();
}
if (!m_Table.get()) {
//load thread specific table.
m_Table.reset(new PrefixTreeMap());
m_Table->Read(m_FilePath+".binlexr");
}
};
bool LexicalReorderingTableTree::Create(std::istream& inFile,
const std::string& outFileName)
{
std::string line;
//TRACE_ERR("Entering Create...\n");
std::string
ofn(outFileName+".binlexr.srctree"),
oft(outFileName+".binlexr.tgtdata"),
ofi(outFileName+".binlexr.idx"),
ofsv(outFileName+".binlexr.voc0"),
oftv(outFileName+".binlexr.voc1");
FILE *os = fOpen(ofn.c_str(),"wb");
FILE *ot = fOpen(oft.c_str(),"wb");
//TRACE_ERR("opend files....\n");
typedef PrefixTreeSA<LabelId,OFF_T> PSA;
PSA *psa = new PSA;
PSA::setDefault(InvalidOffT);
WordVoc* voc[3];
LabelId currFirstWord = InvalidLabelId;
IPhrase currKey;
Candidates cands;
std::vector<OFF_T> vo;
size_t lnc = 0;
size_t numTokens = 0;
size_t numKeyTokens = 0;
while(getline(inFile, line)) {
++lnc;
if(0 == lnc % 10000) {
TRACE_ERR(".");
}
IPhrase key;
Scores score;
std::vector<std::string> tokens = TokenizeMultiCharSeparator(line, "|||");
std::string w;
if(1 == lnc) {
//do some init stuff in the first line
numTokens = tokens.size();
if(tokens.size() == 2) { //f ||| score
numKeyTokens = 1;
voc[0] = new WordVoc();
voc[1] = 0;
} else if(3 == tokens.size() || 4 == tokens.size()) { //either f ||| e ||| score or f ||| e ||| c ||| score
numKeyTokens = 2;
voc[0] = new WordVoc(); //f voc
voc[1] = new WordVoc(); //e voc
voc[2] = voc[1]; //c & e share voc
}
} else {
//sanity check ALL lines must have same number of tokens
CHECK(numTokens == tokens.size());
}
size_t phrase = 0;
for(; phrase < numKeyTokens; ++phrase) {
//conditioned on more than just f... need |||
if(phrase >=1) {
key.push_back(PrefixTreeMap::MagicWord);
}
std::istringstream is(tokens[phrase]);
while(is >> w) {
key.push_back(voc[phrase]->add(w));
}
}
//collect all non key phrases, i.e. c
std::vector<IPhrase> tgt_phrases;
tgt_phrases.resize(numTokens - numKeyTokens - 1);
for(size_t j = 0; j < tgt_phrases.size(); ++j, ++phrase) {
std::istringstream is(tokens[numKeyTokens + j]);
while(is >> w) {
tgt_phrases[j].push_back(voc[phrase]->add(w));
}
}
//last token is score
std::istringstream is(tokens[numTokens-1]);
while(is >> w) {
score.push_back(atof(w.c_str()));
}
//transform score now...
std::transform(score.begin(),score.end(),score.begin(),TransformScore);
std::transform(score.begin(),score.end(),score.begin(),FloorScore);
std::vector<Scores> scores;
scores.push_back(score);
if(key.empty()) {
TRACE_ERR("WARNING: empty source phrase in line '"<<line<<"'\n");
continue;
}
//first time inits
if(currFirstWord == InvalidLabelId) {
currFirstWord = key[0];
}
if(currKey.empty()) {
currKey = key;
//insert key into tree
CHECK(psa);
PSA::Data& d = psa->insert(key);
if(d == InvalidOffT) {
d = fTell(ot);
} else {
TRACE_ERR("ERROR: source phrase already inserted (A)!\nline(" << lnc << "): '" << line << "\n");
return false;
}
}
if(currKey != key) {
//ok new key
currKey = key;
//a) write cands for old key
cands.writeBin(ot);
cands.clear();
//b) check if we need to move on to new tree root
if(key[0] != currFirstWord) {
// write key prefix tree to file and clear
PTF pf;
if(currFirstWord >= vo.size()) {
vo.resize(currFirstWord+1,InvalidOffT);
}
vo[currFirstWord] = fTell(os);
pf.create(*psa, os);
// clear
delete psa;
psa = new PSA;
currFirstWord = key[0];
}
//c) insert key into tree
CHECK(psa);
PSA::Data& d = psa->insert(key);
if(d == InvalidOffT) {
d = fTell(ot);
} else {
TRACE_ERR("ERROR: source phrase already inserted (A)!\nline(" << lnc << "): '" << line << "\n");
return false;
}
}
cands.push_back(GenericCandidate(tgt_phrases, scores));
}
if (lnc == 0) {
TRACE_ERR("ERROR: empty lexicalised reordering file\n" << std::endl);
return false;
}
//flush remainders
cands.writeBin(ot);
cands.clear();
//process last currFirstWord
PTF pf;
if(currFirstWord >= vo.size()) {
vo.resize(currFirstWord+1,InvalidOffT);
}
vo[currFirstWord] = fTell(os);
pf.create(*psa,os);
delete psa;
psa=0;
fClose(os);
fClose(ot);
/*
std::vector<size_t> inv;
for(size_t i = 0; i < vo.size(); ++i){
if(vo[i] == InvalidOffT){
inv.push_back(i);
}
}
if(inv.size()) {
TRACE_ERR("WARNING: there are src voc entries with no phrase "
"translation: count "<<inv.size()<<"\n"
"There exists phrase translations for "<<vo.size()-inv.size()
<<" entries\n");
}
*/
FILE *oi = fOpen(ofi.c_str(),"wb");
fWriteVector(oi,vo);
fClose(oi);
if(voc[0]) {
voc[0]->Write(ofsv);
delete voc[0];
}
if(voc[1]) {
voc[1]->Write(oftv);
delete voc[1];
}
return true;
}
std::string LexicalReorderingTableTree::MakeCacheKey(const Phrase& f,
const Phrase& e) const
{
std::string key;
if(!m_FactorsF.empty()) {
key += auxClearString(f.GetStringRep(m_FactorsF));
}
if(!m_FactorsE.empty()) {
if(!key.empty()) {
key += "|||";
}
key += auxClearString(e.GetStringRep(m_FactorsE));
}
return key;
};
IPhrase LexicalReorderingTableTree::MakeTableKey(const Phrase& f,
const Phrase& e) const
{
IPhrase key;
std::vector<std::string> keyPart;
if(!m_FactorsF.empty()) {
for(size_t i = 0; i < f.GetSize(); ++i) {
/* old code
std::string s = f.GetWord(i).ToString(m_FactorsF);
keyPart.push_back(s.substr(0,s.size()-1));
*/
keyPart.push_back(f.GetWord(i).GetString(m_FactorsF, false));
}
auxAppend(key, m_Table->ConvertPhrase(keyPart, SourceVocId));
keyPart.clear();
}
if(!m_FactorsE.empty()) {
if(!key.empty()) {
key.push_back(PrefixTreeMap::MagicWord);
}
for(size_t i = 0; i < e.GetSize(); ++i) {
/* old code
std::string s = e.GetWord(i).ToString(m_FactorsE);
keyPart.push_back(s.substr(0,s.size()-1));
*/
keyPart.push_back(e.GetWord(i).GetString(m_FactorsE, false));
}
auxAppend(key, m_Table->ConvertPhrase(keyPart,TargetVocId));
//keyPart.clear();
}
return key;
};
struct State {
State(PPimp* t, const std::string& p) : pos(t), path(p) {
}
PPimp* pos;
std::string path;
};
void LexicalReorderingTableTree::auxCacheForSrcPhrase(const Phrase& f)
{
if(m_FactorsE.empty()) {
//f is all of key...
Candidates cands;
m_Table->GetCandidates(MakeTableKey(f,Phrase(ARRAY_SIZE_INCR)),&cands);
m_Cache[MakeCacheKey(f,Phrase(ARRAY_SIZE_INCR))] = cands;
} else {
ObjectPool<PPimp> pool;
PPimp* pPos = m_Table->GetRoot();
//1) goto subtree for f
for(size_t i = 0; i < f.GetSize() && 0 != pPos && pPos->isValid(); ++i) {
/* old code
pPos = m_Table.Extend(pPos, auxClearString(f.GetWord(i).ToString(m_FactorsF)), SourceVocId);
*/
pPos = m_Table->Extend(pPos, f.GetWord(i).GetString(m_FactorsF, false), SourceVocId);
}
if(0 != pPos && pPos->isValid()) {
pPos = m_Table->Extend(pPos, PrefixTreeMap::MagicWord);
}
if(0 == pPos || !pPos->isValid()) {
return;
}
//2) explore whole subtree depth first & cache
std::string cache_key = auxClearString(f.GetStringRep(m_FactorsF)) + "|||";
std::vector<State> stack;
stack.push_back(State(pool.get(PPimp(pPos->ptr()->getPtr(pPos->idx),0,0)),""));
Candidates cands;
while(!stack.empty()) {
if(stack.back().pos->isValid()) {
LabelId w = stack.back().pos->ptr()->getKey(stack.back().pos->idx);
std::string next_path = stack.back().path + " " + m_Table->ConvertWord(w,TargetVocId);
//cache this
m_Table->GetCandidates(*stack.back().pos,&cands);
if(!cands.empty()) {
m_Cache[cache_key + auxClearString(next_path)] = cands;
}
cands.clear();
PPimp* next_pos = pool.get(PPimp(stack.back().pos->ptr()->getPtr(stack.back().pos->idx),0,0));
++stack.back().pos->idx;
stack.push_back(State(next_pos,next_path));
} else {
stack.pop_back();
}
}
}
}
void LexicalReorderingTableTree::Cache(const ConfusionNet& /*input*/)
{
return;
}
void LexicalReorderingTableTree::Cache(const Sentence& input)
{
//only works with sentences...
size_t prev_cache_size = m_Cache.size();
size_t max_phrase_length = input.GetSize();
for(size_t len = 0; len <= max_phrase_length; ++len) {
for(size_t start = 0; start+len <= input.GetSize(); ++start) {
Phrase f = input.GetSubString(WordsRange(start, start+len));
auxCacheForSrcPhrase(f);
}
}
std::cerr << "Cached " << m_Cache.size() - prev_cache_size << " new primary reordering table keys\n";
}
/*
Pre fetching implementation using Phrase and Generation Dictionaries
*//*
void LexicalReorderingTableTree::Cache(const ConfusionNet& input){
typedef TargetPhraseCollection::iterator Iter;
typedef TargetPhraseCollection::const_iterator ConstIter;
//not implemented for confusion networks...
Sentence const* s = dynamic_cast<Sentence const*>(&input);
if(!s){
return;
}
int max_phrase_length = input.GetSize();
std::vector<PhraseDictionaryBase*> PhraseTables = StaticData::Instance()->GetPhraseDictionaries();
//new code:
//std::vector<PhraseDictionary*> PhraseTables = StaticData::Instance()->GetPhraseDictionaries();
std::vector<GenerationDictionary*> GenTables = StaticData::Instance()->GetGenerationDictionaries();
for(size_t len = 1; len <= max_phrase_length; ++len){
for(size_t start = 0; start+len <= input.GetSize(); ++start){
Phrase f = s->GetSubString(WordsRange(start, start+len));
//find all translations of f
TargetPhraseCollection list;
for(size_t t = 0; t < PhraseTables.size(); ++t){
//if(doIntersect(PhraseTables[t]->GetOutputFactorMask(),FactorMask(m_FactorsE))){
//this table gives us something we need
const TargetPhraseCollection* new_list = PhraseTables[t]->GetTargetPhraseCollection(f);
TargetPhraseCollection curr_list;
for(ConstIter i = new_list->begin(); i != new_list->end(); ++i){
for(Iter j = list.begin(); j != list.end(); ++j){
curr_list.Add((*j)->MergeNext(*(*i)));
}
}
if(list.IsEmpty()){
list = *new_list;
} else {
list = curr_list;
}
//}
}
for(size_t g = 0; g < GenTables.size(); ++g){
//if(doIntersect(GenTables[g]->GetOutputFactorMask(),FactorMask(m_FactorsE))){
TargetPhraseCollection curr_list;
for(Iter j = list.begin(); j != list.end(); ++j){
for(size_t w = 0; w < (*j)->GetSize(); ++w){
const OutputWordCollection* words = GenTables[g]->FindWord((*j)->GetWord(w));
for(OutputWordCollection::const_iterator i = words->begin(); i != words->end(); ++i){
TargetPhrase* p = new TargetPhrase(*(*j));
Word& pw = p->GetWord(w);
pw.Merge(i->first);
curr_list.Add(p);
}
}
}
list = curr_list;
//}
}
//cache for each translation
for(Iter e = list.begin(); e < list.end(); ++e){
Candidates cands;
m_Table.GetCandidates(MakeTableKey(f,*(*e)), &cands);
m_Cache.insert(std::make_pair(MakeCacheKey(f,*(*e)),cands));
}
}
}
};
*/
}