mosesdecoder/mira/Optimiser.h

128 lines
4.6 KiB
C++

/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2010 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#ifndef _MIRA_OPTIMISER_H_
#define _MIRA_OPTIMISER_H_
#include <vector>
#include "ScoreComponentCollection.h"
namespace Mira {
class Optimiser {
public:
Optimiser() {}
virtual size_t updateWeightsHopeFear(
Moses::ScoreComponentCollection& currWeights,
Moses::ScoreComponentCollection& weightUpdate,
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValuesHope,
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValuesFear,
const std::vector<std::vector<float> >& bleuScoresHope,
const std::vector<std::vector<float> >& bleuScoresFear,
float learning_rate,
size_t rank,
size_t epoch) = 0;
};
class Perceptron : public Optimiser {
public:
virtual size_t updateWeightsHopeFear(
Moses::ScoreComponentCollection& currWeights,
Moses::ScoreComponentCollection& weightUpdate,
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValuesHope,
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValuesFear,
const std::vector<std::vector<float> >& bleuScoresHope,
const std::vector<std::vector<float> >& bleuScoresFear,
float learning_rate,
size_t rank,
size_t epoch);
};
class MiraOptimiser : public Optimiser {
public:
MiraOptimiser() :
Optimiser() { }
MiraOptimiser(bool onlyViolatedConstraints, float slack, size_t scale_margin, size_t scale_update, float margin_slack) :
Optimiser(),
m_onlyViolatedConstraints(onlyViolatedConstraints),
m_slack(slack),
m_scale_margin(scale_margin),
m_scale_update(scale_update),
m_margin_slack(margin_slack) { }
size_t updateWeights(Moses::ScoreComponentCollection& currWeights,
Moses::ScoreComponentCollection& weightUpdate,
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValues,
const std::vector<std::vector<float> >& losses,
const std::vector<std::vector<float> >& bleuScores,
const std::vector< Moses::ScoreComponentCollection>& oracleFeatureValues,
const std::vector< float> oracleBleuScores,
float learning_rate,
size_t rank,
size_t epoch);
virtual size_t updateWeightsHopeFear(Moses::ScoreComponentCollection& currWeights,
Moses::ScoreComponentCollection& weightUpdate,
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValuesHope,
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValuesFear,
const std::vector<std::vector<float> >& bleuScoresHope,
const std::vector<std::vector<float> >& bleuScoresFear,
float learning_rate,
size_t rank,
size_t epoch);
size_t updateWeightsAnalytically(Moses::ScoreComponentCollection& currWeights,
Moses::ScoreComponentCollection& weightUpdate,
Moses::ScoreComponentCollection& featureValuesHope,
Moses::ScoreComponentCollection& featureValuesFear,
float bleuScoresHope,
float bleuScoresFear,
float learning_rate,
size_t rank,
size_t epoch);
void setSlack(float slack) {
m_slack = slack;
}
void setMarginSlack(float margin_slack) {
m_margin_slack = margin_slack;
}
private:
// add only violated constraints to the optimisation problem
bool m_onlyViolatedConstraints;
// regularise Hildreth updates
float m_slack;
// slack when comparing losses to model scores
float m_margin_slack;
size_t m_scale_margin;
// scale update with log 10 of oracle BLEU score
size_t m_scale_update;
};
}
#endif