mosesdecoder/moses/TranslationModel/PhraseDictionaryMultiModel.cpp
2013-11-22 20:27:46 +00:00

488 lines
17 KiB
C++

/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include "util/exception.hh"
#include "moses/TranslationModel/PhraseDictionaryMultiModel.h"
using namespace std;
namespace Moses
{
PhraseDictionaryMultiModel::PhraseDictionaryMultiModel(const std::string &line)
:PhraseDictionary(line)
{
ReadParameters();
if (m_mode != "interpolate") {
ostringstream msg;
msg << "combination mode unknown: " << m_mode;
throw runtime_error(msg.str());
}
size_t numWeights = m_numScoreComponents;
if (m_mode == "interpolate") {
numWeights--;
}
UTIL_THROW_IF2(m_pdStr.size() != m_multimodelweights.size() &
m_pdStr.size()*numWeights != m_multimodelweights.size(),
"Number of scores and weights are not equal");
}
PhraseDictionaryMultiModel::PhraseDictionaryMultiModel(int type, const std::string &line)
:PhraseDictionary(line)
{
if (type == 1) {
// PhraseDictionaryMultiModelCounts
UTIL_THROW_IF2(m_pdStr.size() != m_multimodelweights.size() &&
m_pdStr.size()*4 != m_multimodelweights.size(),
"Number of scores and weights are not equal");
}
}
void PhraseDictionaryMultiModel::SetParameter(const std::string& key, const std::string& value)
{
if (key == "mode") {
m_mode = value;
} else if (key == "components") {
m_pdStr = Tokenize(value, ",");
m_numModels = m_pdStr.size();
} else if (key == "lambda") {
m_multimodelweights = Tokenize<float>(value, ",");
} else {
PhraseDictionary::SetParameter(key, value);
}
}
PhraseDictionaryMultiModel::~PhraseDictionaryMultiModel()
{
}
void PhraseDictionaryMultiModel::Load()
{
SetFeaturesToApply();
for(size_t i = 0; i < m_numModels; ++i) {
const string &ptName = m_pdStr[i];
PhraseDictionary *pt = FindPhraseDictionary(ptName);
UTIL_THROW_IF2(pt == NULL,
"Could not find component phrase table " << ptName);
m_pd.push_back(pt);
}
}
const TargetPhraseCollection *PhraseDictionaryMultiModel::GetTargetPhraseCollectionLEGACY(const Phrase& src) const
{
std::vector<std::vector<float> > multimodelweights;
if (m_mode == "interpolate") {
//interpolation of phrase penalty is skipped, and fixed-value (2.718) is used instead. results will be screwed up if phrase penalty is not last feature
size_t numWeights = m_numScoreComponents-1;
multimodelweights = getWeights(numWeights, true);
}
std::map<std::string,multiModelStatistics*>* allStats = new(std::map<std::string,multiModelStatistics*>);
CollectSufficientStatistics(src, allStats);
TargetPhraseCollection *ret = NULL;
if (m_mode == "interpolate") {
ret = CreateTargetPhraseCollectionLinearInterpolation(src, allStats, multimodelweights);
}
ret->NthElement(m_tableLimit); // sort the phrases for pruning later
const_cast<PhraseDictionaryMultiModel*>(this)->CacheForCleanup(ret);
RemoveAllInMap(*allStats);
delete allStats;
return ret;
}
void PhraseDictionaryMultiModel::CollectSufficientStatistics(const Phrase& src, std::map<std::string,multiModelStatistics*>* allStats) const
{
for(size_t i = 0; i < m_numModels; ++i) {
const PhraseDictionary &pd = *m_pd[i];
TargetPhraseCollection *ret_raw = (TargetPhraseCollection*) pd.GetTargetPhraseCollectionLEGACY( src);
if (ret_raw != NULL) {
TargetPhraseCollection::iterator iterTargetPhrase, iterLast;
if (m_tableLimit != 0 && ret_raw->GetSize() > m_tableLimit) {
iterLast = ret_raw->begin() + m_tableLimit;
} else {
iterLast = ret_raw->end();
}
for (iterTargetPhrase = ret_raw->begin(); iterTargetPhrase != iterLast; ++iterTargetPhrase) {
const TargetPhrase * targetPhrase = *iterTargetPhrase;
std::vector<float> raw_scores = targetPhrase->GetScoreBreakdown().GetScoresForProducer(&pd);
std::string targetString = targetPhrase->GetStringRep(m_output);
if (allStats->find(targetString) == allStats->end()) {
multiModelStatistics * statistics = new multiModelStatistics;
statistics->targetPhrase = new TargetPhrase(*targetPhrase); //make a copy so that we don't overwrite the original phrase table info
statistics->p.resize(m_numScoreComponents);
for(size_t j = 0; j < m_numScoreComponents; ++j) {
statistics->p[j].resize(m_numModels);
}
//correct future cost estimates and total score
statistics->targetPhrase->GetScoreBreakdown().InvertDenseFeatures(&pd);
vector<FeatureFunction*> pd_feature;
pd_feature.push_back(m_pd[i]);
const vector<FeatureFunction*> pd_feature_const(pd_feature);
statistics->targetPhrase->Evaluate(src, pd_feature_const);
// zero out scores from original phrase table
statistics->targetPhrase->GetScoreBreakdown().ZeroDenseFeatures(&pd);
(*allStats)[targetString] = statistics;
}
multiModelStatistics * statistics = (*allStats)[targetString];
for(size_t j = 0; j < m_numScoreComponents; ++j) {
statistics->p[j][i] = UntransformScore(raw_scores[j]);
}
(*allStats)[targetString] = statistics;
}
}
}
}
TargetPhraseCollection* PhraseDictionaryMultiModel::CreateTargetPhraseCollectionLinearInterpolation(const Phrase& src, std::map<std::string,multiModelStatistics*>* allStats, std::vector<std::vector<float> > &multimodelweights) const
{
TargetPhraseCollection *ret = new TargetPhraseCollection();
for ( std::map< std::string, multiModelStatistics*>::const_iterator iter = allStats->begin(); iter != allStats->end(); ++iter ) {
multiModelStatistics * statistics = iter->second;
Scores scoreVector(m_numScoreComponents);
for(size_t i = 0; i < m_numScoreComponents-1; ++i) {
scoreVector[i] = TransformScore(std::inner_product(statistics->p[i].begin(), statistics->p[i].end(), multimodelweights[i].begin(), 0.0));
}
//assuming that last value is phrase penalty
scoreVector[m_numScoreComponents-1] = 1.0;
statistics->targetPhrase->GetScoreBreakdown().Assign(this, scoreVector);
//correct future cost estimates and total score
vector<FeatureFunction*> pd_feature;
pd_feature.push_back(const_cast<PhraseDictionaryMultiModel*>(this));
const vector<FeatureFunction*> pd_feature_const(pd_feature);
statistics->targetPhrase->Evaluate(src, pd_feature_const);
ret->Add(new TargetPhrase(*statistics->targetPhrase));
}
return ret;
}
//TODO: is it worth caching the results as long as weights don't change?
std::vector<std::vector<float> > PhraseDictionaryMultiModel::getWeights(size_t numWeights, bool normalize) const
{
const std::vector<float>* weights_ptr;
std::vector<float> raw_weights;
weights_ptr = GetTemporaryMultiModelWeightsVector();
// HIEU - uninitialised variable.
//checking weights passed to mosesserver; only valid for this sentence; *don't* raise exception if client weights are malformed
if (weights_ptr == NULL || weights_ptr->size() == 0) {
weights_ptr = &m_multimodelweights; //fall back to weights defined in config
} else if(weights_ptr->size() != m_numModels && weights_ptr->size() != m_numModels * numWeights) {
//TODO: can we pass error message to client if weights are malformed?
std::stringstream strme;
strme << "Must have either one multimodel weight per model (" << m_numModels << "), or one per weighted feature and model (" << numWeights << "*" << m_numModels << "). You have " << weights_ptr->size() << ". Reverting to weights in config";
UserMessage::Add(strme.str());
weights_ptr = &m_multimodelweights; //fall back to weights defined in config
}
//checking weights defined in config; only valid for this sentence; raise exception if config weights are malformed
if (weights_ptr == NULL || weights_ptr->size() == 0) {
for (size_t i=0; i < m_numModels; i++) {
raw_weights.push_back(1.0/m_numModels); //uniform weights created online
}
} else if(weights_ptr->size() != m_numModels && weights_ptr->size() != m_numModels * numWeights) {
std::stringstream strme;
strme << "Must have either one multimodel weight per model (" << m_numModels << "), or one per weighted feature and model (" << numWeights << "*" << m_numModels << "). You have " << weights_ptr->size() << ".";
UTIL_THROW(util::Exception, strme.str());
} else {
raw_weights = *weights_ptr;
}
std::vector<std::vector<float> > multimodelweights (numWeights);
for (size_t i=0; i < numWeights; i++) {
std::vector<float> weights_onefeature (m_numModels);
if(raw_weights.size() == m_numModels) {
weights_onefeature = raw_weights;
} else {
copy ( raw_weights.begin()+i*m_numModels, raw_weights.begin()+(i+1)*m_numModels, weights_onefeature.begin() );
}
if(normalize) {
multimodelweights[i] = normalizeWeights(weights_onefeature);
} else {
multimodelweights[i] = weights_onefeature;
}
}
return multimodelweights;
}
std::vector<float> PhraseDictionaryMultiModel::normalizeWeights(std::vector<float> &weights) const
{
std::vector<float> ret (m_numModels);
float total = std::accumulate(weights.begin(),weights.end(),0.0);
for (size_t i=0; i < weights.size(); i++) {
ret[i] = weights[i]/total;
}
return ret;
}
ChartRuleLookupManager *PhraseDictionaryMultiModel::CreateRuleLookupManager(const ChartParser &, const ChartCellCollectionBase&)
{
UTIL_THROW(util::Exception, "Phrase table used in chart decoder");
}
//copied from PhraseDictionaryCompact; free memory allocated to TargetPhraseCollection (and each TargetPhrase) at end of sentence
void PhraseDictionaryMultiModel::CacheForCleanup(TargetPhraseCollection* tpc)
{
PhraseCache &ref = GetPhraseCache();
ref.push_back(tpc);
}
void PhraseDictionaryMultiModel::CleanUpAfterSentenceProcessing(const InputType &source)
{
PhraseCache &ref = GetPhraseCache();
for(PhraseCache::iterator it = ref.begin(); it != ref.end(); it++) {
delete *it;
}
PhraseCache temp;
temp.swap(ref);
CleanUpComponentModels(source);
std::vector<float> empty_vector;
SetTemporaryMultiModelWeightsVector(empty_vector);
}
void PhraseDictionaryMultiModel::CleanUpComponentModels(const InputType &source)
{
for(size_t i = 0; i < m_numModels; ++i) {
m_pd[i]->CleanUpAfterSentenceProcessing(source);
}
}
const std::vector<float>* PhraseDictionaryMultiModel::GetTemporaryMultiModelWeightsVector() const
{
#ifdef WITH_THREADS
boost::shared_lock<boost::shared_mutex> read_lock(m_lock_weights);
if (m_multimodelweights_tmp.find(boost::this_thread::get_id()) != m_multimodelweights_tmp.end()) {
return &m_multimodelweights_tmp.find(boost::this_thread::get_id())->second;
} else {
return NULL;
}
#else
return &m_multimodelweights_tmp;
#endif
}
void PhraseDictionaryMultiModel::SetTemporaryMultiModelWeightsVector(std::vector<float> weights)
{
#ifdef WITH_THREADS
boost::unique_lock<boost::shared_mutex> lock(m_lock_weights);
m_multimodelweights_tmp[boost::this_thread::get_id()] = weights;
#else
m_multimodelweights_tmp = weights;
#endif
}
#ifdef WITH_DLIB
vector<float> PhraseDictionaryMultiModel::MinimizePerplexity(vector<pair<string, string> > &phrase_pair_vector)
{
const StaticData &staticData = StaticData::Instance();
const string& factorDelimiter = staticData.GetFactorDelimiter();
map<pair<string, string>, size_t> phrase_pair_map;
for ( vector<pair<string, string> >::const_iterator iter = phrase_pair_vector.begin(); iter != phrase_pair_vector.end(); ++iter ) {
phrase_pair_map[*iter] += 1;
}
vector<multiModelStatisticsOptimization*> optimizerStats;
for ( map<pair<string, string>, size_t>::iterator iter = phrase_pair_map.begin(); iter != phrase_pair_map.end(); ++iter ) {
pair<string, string> phrase_pair = iter->first;
string source_string = phrase_pair.first;
string target_string = phrase_pair.second;
vector<float> fs(m_numModels);
map<string,multiModelStatistics*>* allStats = new(map<string,multiModelStatistics*>);
Phrase sourcePhrase(0);
sourcePhrase.CreateFromString(Input, m_input, source_string, factorDelimiter, NULL);
CollectSufficientStatistics(sourcePhrase, allStats); //optimization potential: only call this once per source phrase
//phrase pair not found; leave cache empty
if (allStats->find(target_string) == allStats->end()) {
RemoveAllInMap(*allStats);
delete allStats;
continue;
}
multiModelStatisticsOptimization* targetStatistics = new multiModelStatisticsOptimization();
targetStatistics->targetPhrase = new TargetPhrase(*(*allStats)[target_string]->targetPhrase);
targetStatistics->p = (*allStats)[target_string]->p;
targetStatistics->f = iter->second;
optimizerStats.push_back(targetStatistics);
RemoveAllInMap(*allStats);
delete allStats;
}
Sentence sentence;
CleanUpAfterSentenceProcessing(sentence); // free memory used by compact phrase tables
size_t numWeights = m_numScoreComponents;
if (m_mode == "interpolate") {
//interpolation of phrase penalty is skipped, and fixed-value (2.718) is used instead. results will be screwed up if phrase penalty is not last feature
numWeights = m_numScoreComponents-1;
}
vector<float> ret (m_numModels*numWeights);
for (size_t iFeature=0; iFeature < numWeights; iFeature++) {
CrossEntropy * ObjectiveFunction = new CrossEntropy(optimizerStats, this, iFeature);
vector<float> weight_vector = Optimize(ObjectiveFunction, m_numModels);
if (m_mode == "interpolate") {
weight_vector = normalizeWeights(weight_vector);
}
cerr << "Weight vector for feature " << iFeature << ": ";
for (size_t i=0; i < m_numModels; i++) {
ret[(iFeature*m_numModels)+i] = weight_vector[i];
cerr << weight_vector[i] << " ";
}
cerr << endl;
delete ObjectiveFunction;
}
RemoveAllInColl(optimizerStats);
return ret;
}
vector<float> PhraseDictionaryMultiModel::Optimize(OptimizationObjective *ObjectiveFunction, size_t numModels)
{
dlib::matrix<double,0,1> starting_point;
starting_point.set_size(numModels);
starting_point = 1.0;
try {
dlib::find_min_bobyqa(*ObjectiveFunction,
starting_point,
2*numModels+1, // number of interpolation points
dlib::uniform_matrix<double>(numModels,1, 1e-09), // lower bound constraint
dlib::uniform_matrix<double>(numModels,1, 1e100), // upper bound constraint
1.0, // initial trust region radius
1e-5, // stopping trust region radius
10000 // max number of objective function evaluations
);
} catch (dlib::bobyqa_failure& e) {
cerr << e.what() << endl;
}
vector<float> weight_vector (numModels);
for (int i=0; i < starting_point.nr(); i++) {
weight_vector[i] = starting_point(i);
}
cerr << "Cross-entropy: " << (*ObjectiveFunction)(starting_point) << endl;
return weight_vector;
}
double CrossEntropy::operator() ( const dlib::matrix<double,0,1>& arg) const
{
double total = 0.0;
double n = 0.0;
std::vector<float> weight_vector (m_model->m_numModels);
for (int i=0; i < arg.nr(); i++) {
weight_vector[i] = arg(i);
}
if (m_model->m_mode == "interpolate") {
weight_vector = m_model->normalizeWeights(weight_vector);
}
for ( std::vector<multiModelStatisticsOptimization*>::const_iterator iter = m_optimizerStats.begin(); iter != m_optimizerStats.end(); ++iter ) {
multiModelStatisticsOptimization* statistics = *iter;
size_t f = statistics->f;
double score;
score = std::inner_product(statistics->p[m_iFeature].begin(), statistics->p[m_iFeature].end(), weight_vector.begin(), 0.0);
total -= (FloorScore(TransformScore(score))/TransformScore(2))*f;
n += f;
}
return total/n;
}
#endif
PhraseDictionary *FindPhraseDictionary(const string &ptName)
{
const std::vector<PhraseDictionary*> &pts = PhraseDictionary::GetColl();
PhraseDictionary *pt = NULL;
std::vector<PhraseDictionary*>::const_iterator iter;
for (iter = pts.begin(); iter != pts.end(); ++iter) {
PhraseDictionary *currPt = *iter;
if (currPt->GetScoreProducerDescription() == ptName) {
pt = currPt;
break;
}
}
return pt;
}
} //namespace