mosesdecoder/mert/ForestRescore.h

121 lines
4.0 KiB
C++

/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2014- University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#ifndef MERT_FOREST_RESCORE_H
#define MERT_FOREST_RESCORE_H
#include <valarray>
#include <vector>
#include <boost/unordered_set.hpp>
#include "BleuScorer.h"
#include "Hypergraph.h"
namespace MosesTuning {
std::ostream& operator<<(std::ostream& out, const WordVec& wordVec);
struct NgramHash : public std::unary_function<const WordVec&, std::size_t> {
std::size_t operator()(const WordVec& ngram) const {
return util::MurmurHashNative(&(ngram[0]), ngram.size() * sizeof(WordVec::value_type));
}
};
struct NgramEquals : public std::binary_function<const WordVec&, const WordVec&, bool> {
bool operator()(const WordVec& first, const WordVec& second) const {
if (first.size() != second.size()) return false;
return memcmp(&(first[0]), &(second[0]), first.size() * sizeof(WordVec::value_type)) == 0;
}
};
typedef boost::unordered_map<WordVec, size_t, NgramHash, NgramEquals> NgramCounter;
class ReferenceSet {
public:
void AddLine(size_t sentenceId, const StringPiece& line, Vocab& vocab);
void Load(const std::vector<std::string>& files, Vocab& vocab);
size_t NgramMatches(size_t sentenceId, const WordVec&, bool clip) const;
size_t Length(size_t sentenceId) const {return lengths_[sentenceId];}
private:
//ngrams to (clipped,unclipped) counts
typedef boost::unordered_map<WordVec, std::pair<std::size_t,std::size_t>, NgramHash,NgramEquals> NgramMap;
std::vector<NgramMap> ngramCounts_;
std::vector<size_t> lengths_;
};
struct VertexState {
VertexState();
std::vector<FeatureStatsType> bleuStats;
WordVec leftContext;
WordVec rightContext;
size_t targetLength;
};
/**
* Used to score an rule (ie edge) when we are applying it.
**/
class HgBleuScorer {
public:
HgBleuScorer(const ReferenceSet& references, const Graph& graph, size_t sentenceId, const std::vector<FeatureStatsType>& backgroundBleu):
references_(references), sentenceId_(sentenceId), graph_(graph), backgroundBleu_(backgroundBleu),
backgroundRefLength_(backgroundBleu[kBleuNgramOrder*2]) {
vertexStates_.resize(graph.VertexSize());
totalSourceLength_ = graph.GetVertex(graph.VertexSize()-1).SourceCovered();
}
FeatureStatsType Score(const Edge& edge, const Vertex& head, std::vector<FeatureStatsType>& bleuStats) ;
void UpdateState(const Edge& winnerEdge, size_t vertexId, const std::vector<FeatureStatsType>& bleuStats);
private:
const ReferenceSet& references_;
std::vector<VertexState> vertexStates_;
size_t sentenceId_;
size_t totalSourceLength_;
const Graph& graph_;
std::vector<FeatureStatsType> backgroundBleu_;
FeatureStatsType backgroundRefLength_;
void UpdateMatches(const NgramCounter& counter, std::vector<FeatureStatsType>& bleuStats) const;
size_t GetTargetLength(const Edge& edge) const;
};
struct HgHypothesis {
SparseVector featureVector;
WordVec text;
std::vector<FeatureStatsType> bleuStats;
};
void Viterbi(const Graph& graph, const SparseVector& weights, float bleuWeight, const ReferenceSet& references, size_t sentenceId, const std::vector<FeatureStatsType>& backgroundBleu, HgHypothesis* bestHypo);
};
#endif