mosesdecoder/mira/Main.cpp
2012-02-20 21:22:31 +00:00

1222 lines
49 KiB
C++

/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2010 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <algorithm>
#include <cstdlib>
#include <ctime>
#include <string>
#include <vector>
#include <map>
#include <boost/program_options.hpp>
#include <boost/algorithm/string.hpp>
#ifdef MPI_ENABLE
#include <boost/mpi.hpp>
namespace mpi = boost::mpi;
#endif
#include "Main.h"
#include "FeatureVector.h"
#include "StaticData.h"
#include "ChartTrellisPathList.h"
#include "ChartTrellisPath.h"
#include "ScoreComponentCollection.h"
#include "Decoder.h"
#include "Optimiser.h"
#include "Hildreth.h"
#include "ThreadPool.h"
using namespace Mira;
using namespace std;
using namespace Moses;
namespace po = boost::program_options;
int main(int argc, char** argv) {
size_t rank = 0;
size_t size = 1;
#ifdef MPI_ENABLE
mpi::environment env(argc,argv);
mpi::communicator world;
rank = world.rank();
size = world.size();
#endif
cerr << "Rank: " << rank << " Size: " << size << endl;
bool help;
int verbosity;
string mosesConfigFile;
string inputFile;
vector<string> referenceFiles;
string coreWeightFile;
size_t epochs;
string learner;
bool shuffle;
size_t mixingFrequency;
size_t weightDumpFrequency;
string weightDumpStem;
float min_learning_rate;
size_t scale_margin;
size_t scale_update;
size_t n;
size_t batchSize;
bool distinctNbest;
bool onlyViolatedConstraints;
bool accumulateWeights;
float historySmoothing;
bool scaleByInputLength;
bool scaleByReferenceLength;
bool scaleByTargetLengthLinear;
bool scaleByTargetLengthTrend;
bool scaleByAvgLength;
float scaleByX;
float slack, dummy;
float slack_step;
float slack_min;
bool averageWeights;
bool weightConvergence;
float learning_rate;
float mira_learning_rate;
float perceptron_learning_rate;
bool logFeatureValues;
size_t baseOfLog;
string decoder_settings;
float min_weight_change;
float decrease_learning_rate;
bool normaliseWeights;
bool print_feature_values;
bool historyOf1best;
bool historyOfOracles;
bool sentenceLevelBleu;
float bleuScoreWeight, bleuScoreWeight_hope, bleuScoreWeight_fear;
float margin_slack;
float margin_slack_incr;
bool perceptron_update;
bool hope_fear, hope_fear_rank;
bool model_hope_fear, rank_only;
int hope_n, fear_n, rank_n;
int threadcount;
size_t adapt_after_epoch;
size_t bleu_smoothing_scheme;
float max_length_dev_all;
float max_length_dev_hypos;
float max_length_dev_hope_ref;
float max_length_dev_fear_ref;
float relax_BP;
bool delayUpdates;
float min_oracle_bleu;
float minBleuRatio, maxBleuRatio;
bool boost;
po::options_description desc("Allowed options");
desc.add_options()
("slack", po::value<float>(&slack)->default_value(0.01), "Use slack in optimiser")
("dummy", po::value<float>(&dummy)->default_value(-1), "Dummy variable for slack")
("accumulate-weights", po::value<bool>(&accumulateWeights)->default_value(false), "Accumulate and average weights over all epochs")
("adapt-after-epoch", po::value<size_t>(&adapt_after_epoch)->default_value(0), "Index of epoch after which adaptive parameters will be adapted")
("average-weights", po::value<bool>(&averageWeights)->default_value(false), "Set decoder weights to average weights after each update")
("base-of-log", po::value<size_t>(&baseOfLog)->default_value(10), "Base for taking logs of feature values")
("batch-size,b", po::value<size_t>(&batchSize)->default_value(1), "Size of batch that is send to optimiser for weight adjustments")
("bleu-score-weight", po::value<float>(&bleuScoreWeight)->default_value(1.0), "Bleu score weight used in the decoder objective function (on top of the Bleu objective weight)")
("bleu-score-weight-hope", po::value<float>(&bleuScoreWeight_hope)->default_value(-1), "Bleu score weight used in the decoder objective function for hope translations")
("bleu-score-weight-fear", po::value<float>(&bleuScoreWeight_fear)->default_value(-1), "Bleu score weight used in the decoder objective function for fear translations")
("bleu-smoothing-scheme", po::value<size_t>(&bleu_smoothing_scheme)->default_value(1), "Set a smoothing scheme for sentence-Bleu: +1 (1), +0.1 (2), papineni (3) (default:1)")
("boost", po::value<bool>(&boost)->default_value(false), "Apply boosting factor to updates on misranked candidates")
("config,f", po::value<string>(&mosesConfigFile), "Moses ini-file")
("core-weights", po::value<string>(&coreWeightFile), "Weight file containing the core weights (already tuned, have to be non-zero)")
("decoder-settings", po::value<string>(&decoder_settings)->default_value(""), "Decoder settings for tuning runs")
("decr-learning-rate", po::value<float>(&decrease_learning_rate)->default_value(0),"Decrease learning rate by the given value after every epoch")
("delay-updates", po::value<bool>(&delayUpdates)->default_value(false), "Delay all updates until the end of an epoch")
("distinct-nbest", po::value<bool>(&distinctNbest)->default_value(true), "Use n-best list with distinct translations in inference step")
("epochs,e", po::value<size_t>(&epochs)->default_value(10), "Number of epochs")
("fear-n", po::value<int>(&fear_n)->default_value(-1), "Number of fear translations used")
("help", po::value(&help)->zero_tokens()->default_value(false), "Print this help message and exit")
("history-of-1best", po::value<bool>(&historyOf1best)->default_value(false), "Use 1best translations to update the history")
("history-of-oracles", po::value<bool>(&historyOfOracles)->default_value(false), "Use oracle translations to update the history")
("history-smoothing", po::value<float>(&historySmoothing)->default_value(0.7), "Adjust the factor for history smoothing")
("hope-fear", po::value<bool>(&hope_fear)->default_value(true), "Use only hope and fear translations for optimisation (not model)")
("hope-fear-rank", po::value<bool>(&hope_fear_rank)->default_value(false), "Use hope and fear translations for optimisation, use model for ranking")
("hope-n", po::value<int>(&hope_n)->default_value(-1), "Number of hope translations used")
("input-file,i", po::value<string>(&inputFile), "Input file containing tokenised source")
("learner,l", po::value<string>(&learner)->default_value("mira"), "Learning algorithm")
("log-feature-values", po::value<bool>(&logFeatureValues)->default_value(false), "Take log of feature values according to the given base.")
("margin-incr", po::value<float>(&margin_slack_incr)->default_value(0), "Increment margin slack after every epoch by this amount")
("margin-slack", po::value<float>(&margin_slack)->default_value(0), "Slack when comparing left and right hand side of constraints")
("max-length-dev-all", po::value<float>(&max_length_dev_all)->default_value(-1), "Make use of all 3 following options")
("max-length-dev-hypos", po::value<float>(&max_length_dev_hypos)->default_value(-1), "Number between 0 and 1 specifying the percentage of admissible length deviation between hope and fear translations")
("max-length-dev-hope-ref", po::value<float>(&max_length_dev_hope_ref)->default_value(-1), "Number between 0 and 1 specifying the percentage of admissible length deviation between hope and reference translations")
("max-length-dev-fear-ref", po::value<float>(&max_length_dev_fear_ref)->default_value(-1), "Number between 0 and 1 specifying the percentage of admissible length deviation between fear and reference translations")
("min-bleu-ratio", po::value<float>(&minBleuRatio)->default_value(-1), "Set a minimum BLEU ratio between hope and fear")
("max-bleu-ratio", po::value<float>(&maxBleuRatio)->default_value(-1), "Set a maximum BLEU ratio between hope and fear")
("min-learning-rate", po::value<float>(&min_learning_rate)->default_value(0), "Set a minimum learning rate")
("min-oracle-bleu", po::value<float>(&min_oracle_bleu)->default_value(0), "Set a minimum oracle BLEU score")
("min-weight-change", po::value<float>(&min_weight_change)->default_value(0.01), "Set minimum weight change for stopping criterion")
("mira-learning-rate", po::value<float>(&mira_learning_rate)->default_value(1), "Learning rate for MIRA (fixed or flexible)")
("mixing-frequency", po::value<size_t>(&mixingFrequency)->default_value(5), "How often per epoch to mix weights, when using mpi")
("model-hope-fear", po::value<bool>(&model_hope_fear)->default_value(false), "Use model, hope and fear translations for optimisation")
("nbest,n", po::value<size_t>(&n)->default_value(1), "Number of translations in n-best list")
("normalise", po::value<bool>(&normaliseWeights)->default_value(false), "Whether to normalise the updated weights before passing them to the decoder")
("only-violated-constraints", po::value<bool>(&onlyViolatedConstraints)->default_value(false), "Add only violated constraints to the optimisation problem")
("perceptron-learning-rate", po::value<float>(&perceptron_learning_rate)->default_value(0.01), "Perceptron learning rate")
("print-feature-values", po::value<bool>(&print_feature_values)->default_value(false), "Print out feature values")
("rank-n", po::value<int>(&rank_n)->default_value(-1), "Number of translations used for ranking")
("rank-only", po::value<bool>(&rank_only)->default_value(false), "Use only model translations for optimisation")
("reference-files,r", po::value<vector<string> >(&referenceFiles), "Reference translation files for training")
("relax-BP", po::value<float>(&relax_BP)->default_value(1), "Relax the BP by setting this value between 0 and 1")
("scale-by-input-length", po::value<bool>(&scaleByInputLength)->default_value(true), "Scale the BLEU score by (a history of) the input length")
("scale-by-reference-length", po::value<bool>(&scaleByReferenceLength)->default_value(false), "Scale BLEU by (a history of) the reference length")
("scale-by-target-length-linear", po::value<bool>(&scaleByTargetLengthLinear)->default_value(false), "Scale BLEU by (a history of) the target length (linear future estimate)")
("scale-by-target-length-trend", po::value<bool>(&scaleByTargetLengthTrend)->default_value(false), "Scale BLEU by (a history of) the target length (trend-based future estimate)")
("scale-by-avg-length", po::value<bool>(&scaleByAvgLength)->default_value(false), "Scale BLEU by (a history of) the average of input and reference length")
("scale-by-x", po::value<float>(&scaleByX)->default_value(1), "Scale the BLEU score by value x")
("scale-margin", po::value<size_t>(&scale_margin)->default_value(0), "Scale the margin by the Bleu score of the oracle translation")
("scale-update", po::value<size_t>(&scale_update)->default_value(0), "Scale the update by the Bleu score of the oracle translation")
("sentence-level-bleu", po::value<bool>(&sentenceLevelBleu)->default_value(true), "Use a sentences level Bleu scoring function")
("shuffle", po::value<bool>(&shuffle)->default_value(false), "Shuffle input sentences before processing")
("slack-min", po::value<float>(&slack_min)->default_value(0.01), "Minimum slack used")
("slack-step", po::value<float>(&slack_step)->default_value(0), "Increase slack from epoch to epoch by the value provided")
("stop-weights", po::value<bool>(&weightConvergence)->default_value(true), "Stop when weights converge")
("threads", po::value<int>(&threadcount)->default_value(1), "Number of threads used")
("verbosity,v", po::value<int>(&verbosity)->default_value(0), "Verbosity level")
("weight-dump-frequency", po::value<size_t>(&weightDumpFrequency)->default_value(1), "How often per epoch to dump weights, when using mpi")
("weight-dump-stem", po::value<string>(&weightDumpStem)->default_value("weights"), "Stem of filename to use for dumping weights");
po::options_description cmdline_options;
cmdline_options.add(desc);
po::variables_map vm;
po::store(po::command_line_parser(argc, argv). options(cmdline_options).run(), vm);
po::notify(vm);
if (help) {
std::cout << "Usage: " + string(argv[0])
+ " -f mosesini-file -i input-file -r reference-file(s) [options]"
<< std::endl;
std::cout << desc << std::endl;
return 0;
}
// create threadpool, if using multi-threaded decoding
// note: multi-threading is done on sentence-level,
// each thread translates one sentence
#ifdef WITH_THREADS
if (threadcount < 1) {
cerr << "Error: Need to specify a positive number of threads" << endl;
exit(1);
}
ThreadPool pool(threadcount);
#else
if (threadcount > 1) {
cerr << "Error: Thread count of " << threadcount << " but moses not built with thread support" << endl;
exit(1);
}
#endif
if (dummy != -1)
slack = dummy;
if (mosesConfigFile.empty()) {
cerr << "Error: No moses ini file specified" << endl;
return 1;
}
if (inputFile.empty()) {
cerr << "Error: No input file specified" << endl;
return 1;
}
if (!referenceFiles.size()) {
cerr << "Error: No reference files specified" << endl;
return 1;
}
// load input and references
vector<string> inputSentences;
if (!loadSentences(inputFile, inputSentences)) {
cerr << "Error: Failed to load input sentences from " << inputFile << endl;
return 1;
}
vector<vector<string> > referenceSentences(referenceFiles.size());
for (size_t i = 0; i < referenceFiles.size(); ++i) {
if (!loadSentences(referenceFiles[i], referenceSentences[i])) {
cerr << "Error: Failed to load reference sentences from "
<< referenceFiles[i] << endl;
return 1;
}
if (referenceSentences[i].size() != inputSentences.size()) {
cerr << "Error: Input file length (" << inputSentences.size() << ") != ("
<< referenceSentences[i].size() << ") length of reference file " << i
<< endl;
return 1;
}
}
if (scaleByReferenceLength || scaleByTargetLengthLinear || scaleByTargetLengthTrend || scaleByAvgLength)
scaleByInputLength = false;
// initialise Moses
// add initial Bleu weight and references to initialize Bleu feature
decoder_settings += " -weight-bl 1 -references";
for (size_t i=0; i < referenceFiles.size(); ++i) {
decoder_settings += " ";
decoder_settings += referenceFiles[i];
}
vector<string> decoder_params;
boost::split(decoder_params, decoder_settings, boost::is_any_of("\t "));
MosesDecoder* decoder = new MosesDecoder(mosesConfigFile, verbosity, decoder_params.size(), decoder_params);
decoder->setBleuParameters(scaleByInputLength, scaleByReferenceLength, scaleByAvgLength,
scaleByTargetLengthLinear, scaleByTargetLengthTrend,
scaleByX, historySmoothing, bleu_smoothing_scheme, relax_BP);
if (normaliseWeights) {
ScoreComponentCollection startWeights = decoder->getWeights();
startWeights.L1Normalise();
decoder->setWeights(startWeights);
}
// Optionally shuffle the sentences
vector<size_t> order;
if (rank == 0) {
for (size_t i = 0; i < inputSentences.size(); ++i) {
order.push_back(i);
}
if (shuffle) {
cerr << "Shuffling input sentences.." << endl;
RandomIndex rindex;
random_shuffle(order.begin(), order.end(), rindex);
}
}
// initialise optimizer
Optimiser* optimiser = NULL;
if (learner == "mira") {
if (rank == 0) {
cerr << "Optimising using Mira" << endl;
cerr << "slack: " << slack << ", learning rate: " << mira_learning_rate << endl;
}
optimiser = new MiraOptimiser(onlyViolatedConstraints, slack, scale_margin, scale_update, margin_slack, boost);
learning_rate = mira_learning_rate;
perceptron_update = false;
} else if (learner == "perceptron") {
if (rank == 0) {
cerr << "Optimising using Perceptron" << endl;
}
optimiser = new Perceptron();
learning_rate = perceptron_learning_rate;
perceptron_update = true;
model_hope_fear = false; // mira only
rank_only = false; // mira only
hope_fear = false; // mira only
hope_fear_rank = false; // mira only
n = 1;
hope_n = 1;
fear_n = 1;
} else {
cerr << "Error: Unknown optimiser: " << learner << endl;
return 1;
}
// resolve parameter dependencies
if (batchSize > 1 && perceptron_update) {
batchSize = 1;
cerr << "Info: Setting batch size to 1 for perceptron update" << endl;
}
if (hope_n == -1)
hope_n = n;
if (fear_n == -1)
fear_n = n;
if (rank_n == -1)
rank_n = n;
if (model_hope_fear && hope_fear) {
hope_fear = false; // is true by default
}
if (rank_only && hope_fear) {
hope_fear = false; // is true by default
}
if (hope_fear_rank && hope_fear) {
hope_fear = false; // is true by default
}
if (learner == "mira" && !(hope_fear || model_hope_fear || rank_only || hope_fear_rank)) {
cerr << "Error: Need to select an one of parameters --hope-fear/--model-hope-fear for mira update." << endl;
return 1;
}
if (historyOf1best || historyOfOracles)
sentenceLevelBleu = false;
if (!sentenceLevelBleu) {
if (!historyOf1best && !historyOfOracles) {
historyOf1best = true;
}
}
if (bleuScoreWeight_hope == -1) {
bleuScoreWeight_hope = bleuScoreWeight;
}
if (bleuScoreWeight_fear == -1) {
bleuScoreWeight_fear = bleuScoreWeight;
}
if (max_length_dev_all != -1) {
max_length_dev_hypos = max_length_dev_all;
max_length_dev_hope_ref = max_length_dev_all;
max_length_dev_fear_ref = max_length_dev_all;
}
#ifdef MPI_ENABLE
mpi::broadcast(world, order, 0);
#endif
// Create shards according to the number of processes used
vector<size_t> shard;
float shardSize = (float) (order.size()) / size;
VERBOSE(1, "Shard size: " << shardSize << endl);
size_t shardStart = (size_t) (shardSize * rank);
size_t shardEnd = (size_t) (shardSize * (rank + 1));
if (rank == size - 1)
shardEnd = order.size();
VERBOSE(1, "Rank: " << rank << " Shard start: " << shardStart << " Shard end: " << shardEnd << endl);
shard.resize(shardSize);
copy(order.begin() + shardStart, order.begin() + shardEnd, shard.begin());
// get reference to feature functions
const vector<const ScoreProducer*> featureFunctions =
StaticData::Instance().GetTranslationSystem(TranslationSystem::DEFAULT).GetFeatureFunctions();
// read core weight file
ProducerWeightMap coreWeightMap;
if (!coreWeightFile.empty()) {
if (!loadCoreWeights(coreWeightFile, coreWeightMap, featureFunctions)) {
cerr << "Error: Failed to load core weights from " << coreWeightFile << endl;
return 1;
}
else
cerr << "Loaded core weights from " << coreWeightFile << "." << endl;
}
// set core weights
ScoreComponentCollection initialWeights = decoder->getWeights();
if (coreWeightMap.size() > 0) {
ProducerWeightMap::iterator p;
for(p = coreWeightMap.begin(); p!=coreWeightMap.end(); ++p)
{
initialWeights.Assign(p->first, p->second);
}
}
decoder->setWeights(initialWeights);
//Main loop:
// print initial weights
cerr << "Rank " << rank << ", initial weights: " << initialWeights << endl;
ScoreComponentCollection cumulativeWeights; // collect weights per epoch to produce an average
size_t numberOfUpdates = 0;
size_t numberOfUpdatesThisEpoch = 0;
time_t now;
time(&now);
cerr << "Rank " << rank << ", " << ctime(&now) << endl;
ScoreComponentCollection mixedAverageWeights;
ScoreComponentCollection mixedAverageWeightsPrevious;
ScoreComponentCollection mixedAverageWeightsBeforePrevious;
// for accumulating delayed updates
ScoreComponentCollection delayedWeightUpdates;
bool stop = false;
// int sumStillViolatedConstraints;
float *sendbuf, *recvbuf;
sendbuf = (float *) malloc(sizeof(float));
recvbuf = (float *) malloc(sizeof(float));
for (size_t epoch = 0; epoch < epochs && !stop; ++epoch) {
// sum of violated constraints in an epoch
// sumStillViolatedConstraints = 0;
numberOfUpdatesThisEpoch = 0;
// Sum up weights over one epoch, final average uses weights from last epoch
if (!accumulateWeights)
cumulativeWeights.ZeroAll();
delayedWeightUpdates.ZeroAll();
// number of weight dumps this epoch
size_t weightEpochDump = 0;
size_t shardPosition = 0;
vector<size_t>::const_iterator sid = shard.begin();
while (sid != shard.end()) {
// feature values for hypotheses i,j (matrix: batchSize x 3*n x featureValues)
vector<vector<ScoreComponentCollection> > featureValues;
vector<vector<float> > bleuScores;
vector<vector<float> > modelScores;
// variables for hope-fear/perceptron setting
vector<vector<ScoreComponentCollection> > featureValuesHope;
vector<vector<ScoreComponentCollection> > featureValuesFear;
vector<vector<float> > bleuScoresHope;
vector<vector<float> > bleuScoresFear;
vector<vector<float> > modelScoresHope;
vector<vector<float> > modelScoresFear;
vector<vector<ScoreComponentCollection> > dummyFeatureValues;
vector<vector<float> > dummyBleuScores;
vector<vector<float> > dummyModelScores;
// get moses weights
ScoreComponentCollection mosesWeights = decoder->getWeights();
VERBOSE(1, "\nRank " << rank << ", epoch " << epoch << ", weights: " << mosesWeights << endl);
// BATCHING: produce nbest lists for all input sentences in batch
vector<float> oracleBleuScores;
vector<float> oracleModelScores;
vector<vector<const Word*> > oracles;
vector<vector<const Word*> > oneBests;
vector<ScoreComponentCollection> oracleFeatureValues;
vector<size_t> inputLengths;
vector<size_t> ref_ids;
size_t actualBatchSize = 0;
vector<size_t>::const_iterator current_sid_start = sid;
size_t examples_in_batch = 0;
for (size_t batchPosition = 0; batchPosition < batchSize && sid
!= shard.end(); ++batchPosition) {
string& input = inputSentences[*sid];
// const vector<string>& refs = referenceSentences[*sid];
cerr << "\nRank " << rank << ", epoch " << epoch << ", input sentence " << *sid << ": \"" << input << "\"" << " (batch pos " << batchPosition << ")" << endl;
vector<ScoreComponentCollection> newFeatureValues;
vector<float> newScores;
if (model_hope_fear || rank_only || hope_fear_rank) {
featureValues.push_back(newFeatureValues);
bleuScores.push_back(newScores);
modelScores.push_back(newScores);
}
if (hope_fear || hope_fear_rank || perceptron_update) {
featureValuesHope.push_back(newFeatureValues);
featureValuesFear.push_back(newFeatureValues);
bleuScoresHope.push_back(newScores);
bleuScoresFear.push_back(newScores);
modelScoresHope.push_back(newScores);
modelScoresFear.push_back(newScores);
if (historyOf1best) {
dummyFeatureValues.push_back(newFeatureValues);
dummyBleuScores.push_back(newScores);
dummyModelScores.push_back(newScores);
}
}
size_t ref_length;
float avg_ref_length;
if (hope_fear || hope_fear_rank || perceptron_update) {
// HOPE
cerr << "Rank " << rank << ", epoch " << epoch << ", " << hope_n << "best hope translations" << endl;
vector<const Word*> oracle = decoder->getNBest(input, *sid, hope_n, 1.0, bleuScoreWeight_hope,
featureValuesHope[batchPosition], bleuScoresHope[batchPosition], modelScoresHope[batchPosition],
true, distinctNbest, rank, epoch);
size_t current_input_length = decoder->getCurrentInputLength();
decoder->cleanup();
ref_length = decoder->getClosestReferenceLength(*sid, oracle.size());
avg_ref_length = ref_length;
float hope_length_ratio = (float)oracle.size()/ref_length;
int oracleSize = (int)oracle.size();
cerr << ", l-ratio hope: " << hope_length_ratio << endl;
cerr << "Rank " << rank << ", epoch " << epoch << ", current input length: " << current_input_length << endl;
bool skip = false;
// Length-related example selection
float length_diff_hope = abs(1 - hope_length_ratio);
if (max_length_dev_hope_ref != -1 && length_diff_hope > max_length_dev_hope_ref)
skip = true;
vector<const Word*> bestModel;
if (historyOf1best && !skip) {
// MODEL (for updating the history only, using dummy vectors)
cerr << "Rank " << rank << ", epoch " << epoch << ", 1best wrt model score (for history or length stabilisation)" << endl;
bestModel = decoder->getNBest(input, *sid, 1, 0.0, bleuScoreWeight,
dummyFeatureValues[batchPosition], dummyBleuScores[batchPosition], dummyModelScores[batchPosition],
true, distinctNbest, rank, epoch);
decoder->cleanup();
cerr << endl;
ref_length = decoder->getClosestReferenceLength(*sid, bestModel.size());
}
// FEAR
float fear_length_ratio = 0;
float bleuRatioHopeFear = 0;
int fearSize = 0;
if (!skip) {
cerr << "Rank " << rank << ", epoch " << epoch << ", " << fear_n << "best fear translations" << endl;
vector<const Word*> fear = decoder->getNBest(input, *sid, fear_n, -1.0, bleuScoreWeight_fear,
featureValuesFear[batchPosition], bleuScoresFear[batchPosition], modelScoresFear[batchPosition],
true, distinctNbest, rank, epoch);
decoder->cleanup();
ref_length = decoder->getClosestReferenceLength(*sid, fear.size());
avg_ref_length += ref_length;
avg_ref_length /= 2;
fear_length_ratio = (float)fear.size()/ref_length;
fearSize = (int)fear.size();
cerr << ", l-ratio fear: " << fear_length_ratio << endl;
for (size_t i = 0; i < fear.size(); ++i)
delete fear[i];
// Bleu-related example selection
bleuRatioHopeFear = bleuScoresHope[batchPosition][0] / bleuScoresFear[batchPosition][0];
if (minBleuRatio != -1 && bleuRatioHopeFear < minBleuRatio)
skip = true;
if(maxBleuRatio != -1 && bleuRatioHopeFear > maxBleuRatio)
skip = true;
// Length-related example selection
float length_diff_fear = abs(1 - fear_length_ratio);
size_t length_diff_hope_fear = abs(oracleSize - fearSize);
cerr << "Rank " << rank << ", epoch " << epoch << ", abs-length hope-fear: " << length_diff_hope_fear << ", BLEU hope-fear: " << bleuScoresHope[batchPosition][0] - bleuScoresFear[batchPosition][0] << endl;
if (max_length_dev_hypos != -1 && (length_diff_hope_fear > avg_ref_length * max_length_dev_hypos))
skip = true;
if (max_length_dev_fear_ref != -1 && length_diff_fear > max_length_dev_fear_ref)
skip = true;
}
if (skip) {
cerr << "Rank " << rank << ", epoch " << epoch << ", skip example (" << hope_length_ratio << ", " << bleuRatioHopeFear << ").. " << endl;
featureValuesHope[batchPosition].clear();
featureValuesFear[batchPosition].clear();
bleuScoresHope[batchPosition].clear();
bleuScoresFear[batchPosition].clear();
if (historyOf1best) {
dummyFeatureValues[batchPosition].clear();
dummyBleuScores[batchPosition].clear();
}
}
else {
// needed for history
inputLengths.push_back(current_input_length);
ref_ids.push_back(*sid);
if (!sentenceLevelBleu) {
oracles.push_back(oracle);
oneBests.push_back(bestModel);
}
examples_in_batch++;
}
}
if (rank_only || hope_fear_rank) {
// MODEL
cerr << "Rank " << rank << ", epoch " << epoch << ", " << rank_n << "best wrt model score" << endl;
vector<const Word*> bestModel = decoder->getNBest(input, *sid, rank_n, 0.0, bleuScoreWeight,
featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition],
true, distinctNbest, rank, epoch);
decoder->cleanup();
oneBests.push_back(bestModel);
ref_length = decoder->getClosestReferenceLength(*sid, bestModel.size());
float model_length_ratio = (float)bestModel.size()/ref_length;
cerr << ", l-ratio model: " << model_length_ratio << endl;
examples_in_batch++;
}
if (model_hope_fear) {
// HOPE
cerr << "Rank " << rank << ", epoch " << epoch << ", " << n << "best hope translations" << endl;
size_t oraclePos = featureValues[batchPosition].size();
vector<const Word*> oracle = decoder->getNBest(input, *sid, n, 1.0, bleuScoreWeight_hope,
featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition],
true, distinctNbest, rank, epoch);
// needed for history
inputLengths.push_back(decoder->getCurrentInputLength());
ref_ids.push_back(*sid);
decoder->cleanup();
oracles.push_back(oracle);
ref_length = decoder->getClosestReferenceLength(*sid, oracle.size());
float hope_length_ratio = (float)oracle.size()/ref_length;
cerr << ", l-ratio hope: " << hope_length_ratio << endl;
oracleFeatureValues.push_back(featureValues[batchPosition][oraclePos]);
oracleBleuScores.push_back(bleuScores[batchPosition][oraclePos]);
oracleModelScores.push_back(modelScores[batchPosition][oraclePos]);
// MODEL
cerr << "Rank " << rank << ", epoch " << epoch << ", " << n << "best wrt model score" << endl;
vector<const Word*> bestModel = decoder->getNBest(input, *sid, n, 0.0, bleuScoreWeight,
featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition],
true, distinctNbest, rank, epoch);
decoder->cleanup();
oneBests.push_back(bestModel);
ref_length = decoder->getClosestReferenceLength(*sid, bestModel.size());
float model_length_ratio = (float)bestModel.size()/ref_length;
cerr << ", l-ratio model: " << model_length_ratio << endl;
// FEAR
cerr << "Rank " << rank << ", epoch " << epoch << ", " << n << "best fear translations" << endl;
size_t fearPos = featureValues[batchPosition].size();
vector<const Word*> fear = decoder->getNBest(input, *sid, n, -1.0, bleuScoreWeight_fear,
featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition],
true, distinctNbest, rank, epoch);
decoder->cleanup();
ref_length = decoder->getClosestReferenceLength(*sid, fear.size());
float fear_length_ratio = (float)fear.size()/ref_length;
cerr << ", l-ratio fear: " << fear_length_ratio << endl;
for (size_t i = 0; i < fear.size(); ++i) {
delete fear[i];
}
examples_in_batch++;
}
// next input sentence
++sid;
++actualBatchSize;
++shardPosition;
} // end of batch loop
if (examples_in_batch == 0) {
cerr << "Rank " << rank << ", epoch " << epoch << ", batch is empty." << endl;
}
else {
vector<vector<float> > losses(actualBatchSize);
if (model_hope_fear) {
// Set loss for each sentence as BLEU(oracle) - BLEU(hypothesis)
for (size_t batchPosition = 0; batchPosition < actualBatchSize; ++batchPosition) {
for (size_t j = 0; j < bleuScores[batchPosition].size(); ++j) {
losses[batchPosition].push_back(oracleBleuScores[batchPosition] - bleuScores[batchPosition][j]);
}
}
}
// set weight for bleu feature to 0 before optimizing
vector<const ScoreProducer*>::const_iterator iter = featureFunctions.begin();
for (; iter != featureFunctions.end(); ++iter)
if ((*iter)->GetScoreProducerWeightShortName() == "bl") {
mosesWeights.Assign(*iter, 0);
break;
}
// take logs of feature values
if (logFeatureValues) {
takeLogs(featureValuesHope, baseOfLog);
takeLogs(featureValuesFear, baseOfLog);
takeLogs(featureValues, baseOfLog);
for (size_t i = 0; i < oracleFeatureValues.size(); ++i) {
oracleFeatureValues[i].LogCoreFeatures(baseOfLog);
}
}
// print out the feature values
if (print_feature_values) {
cerr << "\nRank " << rank << ", epoch " << epoch << ", feature values: " << endl;
if (model_hope_fear || rank_only) printFeatureValues(featureValues);
else {
cerr << "hope: " << endl;
printFeatureValues(featureValuesHope);
cerr << "fear: " << endl;
printFeatureValues(featureValuesFear);
}
}
// set core features to 0 to avoid updating the feature weights
if (coreWeightMap.size() > 0) {
ignoreCoreFeatures(featureValues, coreWeightMap);
ignoreCoreFeatures(featureValuesHope, coreWeightMap);
ignoreCoreFeatures(featureValuesFear, coreWeightMap);
}
// Run optimiser on batch:
VERBOSE(1, "\nRank " << rank << ", epoch " << epoch << ", run optimiser:" << endl);
size_t update_status;
ScoreComponentCollection weightUpdate;
if (perceptron_update) {
vector<vector<float> > dummy1;
update_status = optimiser->updateWeightsHopeFear(mosesWeights, weightUpdate,
featureValuesHope, featureValuesFear, dummy1, dummy1, dummy1, dummy1, learning_rate, rank, epoch);
}
else if (hope_fear) {
if (bleuScoresHope[0][0] >= min_oracle_bleu)
if (hope_n == 1 && fear_n ==1)
update_status = ((MiraOptimiser*) optimiser)->updateWeightsAnalytically(mosesWeights, weightUpdate,
featureValuesHope[0][0], featureValuesFear[0][0], bleuScoresHope[0][0], bleuScoresFear[0][0],
modelScoresHope[0][0], modelScoresFear[0][0], learning_rate, rank, epoch);
else
update_status = optimiser->updateWeightsHopeFear(mosesWeights, weightUpdate,
featureValuesHope, featureValuesFear, bleuScoresHope, bleuScoresFear,
modelScoresHope, modelScoresFear, learning_rate, rank, epoch);
else
update_status = -1;
}
else if (rank_only) {
// learning ranking of model translations
update_status = ((MiraOptimiser*) optimiser)->updateWeightsRankModel(mosesWeights, weightUpdate,
featureValues, bleuScores, modelScores, learning_rate, rank, epoch);
}
else if (hope_fear_rank) {
// hope-fear + learning ranking of model translations
update_status = ((MiraOptimiser*) optimiser)->updateWeightsHopeFearAndRankModel(mosesWeights, weightUpdate,
featureValuesHope, featureValuesFear, featureValues, bleuScoresHope, bleuScoresFear, bleuScores,
modelScoresHope, modelScoresFear, modelScores, learning_rate, rank, epoch);
}
else {
// model_hope_fear
update_status = ((MiraOptimiser*) optimiser)->updateWeights(mosesWeights, weightUpdate,
featureValues, losses, bleuScores, modelScores, oracleFeatureValues, oracleBleuScores, oracleModelScores, learning_rate, rank, epoch);
}
// sumStillViolatedConstraints += update_status;
if (update_status == 0) { // if weights were updated
// apply weight update
if (delayUpdates) {
delayedWeightUpdates.PlusEquals(weightUpdate);
cerr << "\nRank " << rank << ", epoch " << epoch << ", keeping update: " << weightUpdate << endl;
++numberOfUpdatesThisEpoch;
}
else {
mosesWeights.PlusEquals(weightUpdate);
if (normaliseWeights)
mosesWeights.L1Normalise();
cumulativeWeights.PlusEquals(mosesWeights);
++numberOfUpdates;
++numberOfUpdatesThisEpoch;
if (averageWeights) {
ScoreComponentCollection averageWeights(cumulativeWeights);
if (accumulateWeights) {
averageWeights.DivideEquals(numberOfUpdates);
} else {
averageWeights.DivideEquals(numberOfUpdatesThisEpoch);
}
mosesWeights = averageWeights;
}
if (!delayUpdates)
// set new Moses weights
decoder->setWeights(mosesWeights);
}
}
// update history (for approximate document Bleu)
if (historyOf1best) {
for (size_t i = 0; i < oneBests.size(); ++i) {
cerr << "Rank " << rank << ", epoch " << epoch << ", update history with 1best length: " << oneBests[i].size() << " ";
}
decoder->updateHistory(oneBests, inputLengths, ref_ids, rank, epoch);
}
else if (historyOfOracles) {
for (size_t i = 0; i < oracles.size(); ++i) {
cerr << "Rank " << rank << ", epoch " << epoch << ", update history with oracle length: " << oracles[i].size() << " ";
}
decoder->updateHistory(oracles, inputLengths, ref_ids, rank, epoch);
}
deleteTranslations(oracles);
deleteTranslations(oneBests);
} // END TRANSLATE AND UPDATE OF BATCH
size_t mixing_base = mixingFrequency == 0 ? 0 : shard.size() / mixingFrequency;
size_t dumping_base = weightDumpFrequency ==0 ? 0 : shard.size() / weightDumpFrequency;
// mix weights?
if (evaluateModulo(shardPosition, mixing_base, actualBatchSize)) {
#ifdef MPI_ENABLE
ScoreComponentCollection mixedWeights;
cerr << "\nRank " << rank << ", before mixing: " << mosesWeights << endl;
// collect all weights in mixedWeights and divide by number of processes
mpi::reduce(world, mosesWeights, mixedWeights, SCCPlus(), 0);
if (rank == 0) {
// divide by number of processes
mixedWeights.DivideEquals(size);
// normalise weights after averaging
if (normaliseWeights) {
mixedWeights.L1Normalise();
cerr << "Mixed weights (normalised): " << mixedWeights << endl;
}
else {
cerr << "Mixed weights: " << mixedWeights << endl;
}
}
// broadcast average weights from process 0
mpi::broadcast(world, mixedWeights, 0);
decoder->setWeights(mixedWeights);
mosesWeights = mixedWeights;
#endif
#ifndef MPI_ENABLE
cerr << "\nRank " << rank << ", no mixing, weights: " << mosesWeights << endl;
#endif
} // end mixing
// Dump weights?
if (!delayUpdates && evaluateModulo(shardPosition, dumping_base, actualBatchSize)) {
ScoreComponentCollection tmpAverageWeights(cumulativeWeights);
bool proceed = false;
if (accumulateWeights) {
if (numberOfUpdates > 0) {
tmpAverageWeights.DivideEquals(numberOfUpdates);
proceed = true;
}
} else {
if (numberOfUpdatesThisEpoch > 0) {
tmpAverageWeights.DivideEquals(numberOfUpdatesThisEpoch);
proceed = true;
}
}
if (proceed) {
#ifdef MPI_ENABLE
// average across processes
mpi::reduce(world, tmpAverageWeights, mixedAverageWeights, SCCPlus(), 0);
#endif
#ifndef MPI_ENABLE
mixedAverageWeights = tmpAverageWeights;
#endif
if (rank == 0 && !weightDumpStem.empty()) {
// divide by number of processes
mixedAverageWeights.DivideEquals(size);
// normalise weights after averaging
if (normaliseWeights) {
mixedAverageWeights.L1Normalise();
}
// dump final average weights
ostringstream filename;
if (epoch < 10) {
filename << weightDumpStem << "_0" << epoch;
} else {
filename << weightDumpStem << "_" << epoch;
}
if (weightDumpFrequency > 1) {
filename << "_" << weightEpochDump;
}
if (accumulateWeights) {
cerr << "\nMixed average weights (cumulative) during epoch " << epoch << ": " << mixedAverageWeights << endl;
} else {
cerr << "\nMixed average weights during epoch " << epoch << ": " << mixedAverageWeights << endl;
}
cerr << "Dumping mixed average weights during epoch " << epoch << " to " << filename.str() << endl << endl;
mixedAverageWeights.Save(filename.str());
++weightEpochDump;
}
}
}// end dumping
} // end of shard loop, end of this epoch
if (delayUpdates) {
// apply all updates from this epoch to the weight vector
ScoreComponentCollection mosesWeights = decoder->getWeights();
cerr << "Rank " << rank << ", epoch " << epoch << ", delayed update, old moses weights: " << mosesWeights << endl;
mosesWeights.PlusEquals(delayedWeightUpdates);
cumulativeWeights.PlusEquals(mosesWeights);
decoder->setWeights(mosesWeights);
cerr << "Rank " << rank << ", epoch " << epoch << ", delayed update, new moses weights: " << mosesWeights << endl;
ScoreComponentCollection tmpAverageWeights(cumulativeWeights);
bool proceed = false;
if (accumulateWeights) {
if (numberOfUpdatesThisEpoch > 0) {
tmpAverageWeights.DivideEquals(epoch+1);
proceed = true;
}
}
else {
if (numberOfUpdatesThisEpoch > 0)
proceed = true;
}
if (proceed) {
#ifdef MPI_ENABLE
// average across processes
mpi::reduce(world, tmpAverageWeights, mixedAverageWeights, SCCPlus(), 0);
#endif
#ifndef MPI_ENABLE
mixedAverageWeights = tmpAverageWeights;
#endif
if (rank == 0 && !weightDumpStem.empty()) {
// divide by number of processes
mixedAverageWeights.DivideEquals(size);
// normalise weights after averaging
if (normaliseWeights) {
mixedAverageWeights.L1Normalise();
}
// dump final average weights
ostringstream filename;
if (epoch < 10) {
filename << weightDumpStem << "_0" << epoch;
} else {
filename << weightDumpStem << "_" << epoch;
}
if (weightDumpFrequency > 1) {
filename << "_" << weightEpochDump;
}
if (accumulateWeights) {
cerr << "\nMixed average weights (cumulative) during epoch " << epoch << ": " << mixedAverageWeights << endl;
} else {
cerr << "\nMixed average weights during epoch " << epoch << ": " << mixedAverageWeights << endl;
}
cerr << "Dumping mixed average weights during epoch " << epoch << " to " << filename.str() << endl << endl;
mixedAverageWeights.Save(filename.str());
++weightEpochDump;
}
}
}
if (verbosity > 0) {
cerr << "Bleu feature history after epoch " << epoch << endl;
decoder->printBleuFeatureHistory(cerr);
}
// cerr << "Rank " << rank << ", epoch " << epoch << ", sum of violated constraints: " << sumStillViolatedConstraints << endl;
// Check whether there were any weight updates during this epoch
size_t sumUpdates;
size_t *sendbuf_uint, *recvbuf_uint;
sendbuf_uint = (size_t *) malloc(sizeof(size_t));
recvbuf_uint = (size_t *) malloc(sizeof(size_t));
#ifdef MPI_ENABLE
//mpi::reduce(world, numberOfUpdatesThisEpoch, sumUpdates, MPI_SUM, 0);
sendbuf_uint[0] = numberOfUpdatesThisEpoch;
recvbuf_uint[0] = 0;
MPI_Reduce(sendbuf_uint, recvbuf_uint, 1, MPI_UNSIGNED, MPI_SUM, 0, world);
sumUpdates = recvbuf_uint[0];
#endif
#ifndef MPI_ENABLE
sumUpdates = numberOfUpdatesThisEpoch;
#endif
if (rank == 0 && sumUpdates == 0) {
cerr << "\nNo weight updates during this epoch.. stopping." << endl;
stop = true;
#ifdef MPI_ENABLE
mpi::broadcast(world, stop, 0);
#endif
}
if (!stop) {
// Test if weights have converged
if (weightConvergence) {
bool reached = true;
if (rank == 0 && (epoch >= 2)) {
ScoreComponentCollection firstDiff(mixedAverageWeights);
firstDiff.MinusEquals(mixedAverageWeightsPrevious);
VERBOSE(1, "Average weight changes since previous epoch: " << firstDiff <<
" (max: " << firstDiff.GetLInfNorm() << ")" << endl);
ScoreComponentCollection secondDiff(mixedAverageWeights);
secondDiff.MinusEquals(mixedAverageWeightsBeforePrevious);
VERBOSE(1, "Average weight changes since before previous epoch: " << secondDiff <<
" (max: " << secondDiff.GetLInfNorm() << ")" << endl << endl);
// check whether stopping criterion has been reached
// (both difference vectors must have all weight changes smaller than min_weight_change)
if (firstDiff.GetLInfNorm() >= min_weight_change)
reached = false;
if (secondDiff.GetLInfNorm() >= min_weight_change)
reached = false;
if (reached) {
// stop MIRA
stop = true;
cerr << "\nWeights have converged after epoch " << epoch << ".. stopping MIRA." << endl;
ScoreComponentCollection dummy;
ostringstream endfilename;
endfilename << "stopping";
dummy.Save(endfilename.str());
}
}
mixedAverageWeightsBeforePrevious = mixedAverageWeightsPrevious;
mixedAverageWeightsPrevious = mixedAverageWeights;
#ifdef MPI_ENABLE
mpi::broadcast(world, stop, 0);
#endif
} //end if (weightConvergence)
// adjust flexible parameters
if (!stop && epoch >= adapt_after_epoch) {
// if using flexible slack, decrease slack parameter for next epoch
if (slack_step > 0) {
if (slack - slack_step >= slack_min) {
if (typeid(*optimiser) == typeid(MiraOptimiser)) {
slack -= slack_step;
VERBOSE(1, "Change slack to: " << slack << endl);
((MiraOptimiser*) optimiser)->setSlack(slack);
}
}
}
// if using flexible margin slack, decrease margin slack parameter for next epoch
if (margin_slack_incr > 0.0001) {
if (typeid(*optimiser) == typeid(MiraOptimiser)) {
margin_slack += margin_slack_incr;
VERBOSE(1, "Change margin slack to: " << margin_slack << endl);
((MiraOptimiser*) optimiser)->setMarginSlack(margin_slack);
}
}
// change learning rate
if ((decrease_learning_rate > 0) && (learning_rate - decrease_learning_rate >= min_learning_rate)) {
learning_rate -= decrease_learning_rate;
if (learning_rate <= 0.0001) {
learning_rate = 0;
stop = true;
#ifdef MPI_ENABLE
mpi::broadcast(world, stop, 0);
#endif
}
VERBOSE(1, "Change learning rate to " << learning_rate << endl);
}
}
}
} // end of epoch loop
#ifdef MPI_ENABLE
MPI_Finalize();
#endif
time(&now);
cerr << "Rank " << rank << ", " << ctime(&now);
delete decoder;
exit(0);
}
bool loadSentences(const string& filename, vector<string>& sentences) {
ifstream in(filename.c_str());
if (!in)
return false;
string line;
while (getline(in, line)) {
sentences.push_back(line);
}
return true;
}
bool loadCoreWeights(const string& filename, ProducerWeightMap& coreWeightMap, const vector<const ScoreProducer*> &featureFunctions) {
ifstream in(filename.c_str());
if (!in)
return false;
string line;
vector< float > store_weights;
cerr << "Loading core weights:" << endl;
while (getline(in, line)) {
// split weight name from value
vector<string> split_line;
boost::split(split_line, line, boost::is_any_of(" "));
float weight;
if(!from_string<float>(weight, split_line[1], std::dec))
{
cerr << "reading in float failed.." << endl;
return false;
}
// find producer for this score
string name = split_line[0];
for (size_t i=0; i < featureFunctions.size(); ++i) {
std::string prefix = featureFunctions[i]->GetScoreProducerDescription();
if (name.substr( 0, prefix.length() ).compare( prefix ) == 0) {
if (featureFunctions[i]->GetNumScoreComponents() == 1) {
vector< float > weights;
weights.push_back(weight);
coreWeightMap.insert(ProducerWeightPair(featureFunctions[i], weights));
cerr << "insert 1 weight for " << featureFunctions[i]->GetScoreProducerDescription();
cerr << " (" << weight << ")" << endl;
}
else {
store_weights.push_back(weight);
if (store_weights.size() == featureFunctions[i]->GetNumScoreComponents()) {
coreWeightMap.insert(ProducerWeightPair(featureFunctions[i], store_weights));
cerr << "insert " << store_weights.size() << " weights for " << featureFunctions[i]->GetScoreProducerDescription() << " (";
for (size_t j=0; j < store_weights.size(); ++j)
cerr << store_weights[j] << " ";
cerr << ")" << endl;
store_weights.clear();
}
}
}
}
}
return true;
}
bool evaluateModulo(size_t shard_position, size_t mix_or_dump_base, size_t actual_batch_size) {
if (mix_or_dump_base == 0) return 0;
if (actual_batch_size > 1) {
bool mix_or_dump = false;
size_t numberSubtracts = actual_batch_size;
do {
if (shard_position % mix_or_dump_base == 0) {
mix_or_dump = true;
break;
}
--shard_position;
--numberSubtracts;
} while (numberSubtracts > 0);
return mix_or_dump;
}
else {
return ((shard_position % mix_or_dump_base) == 0);
}
}
void printFeatureValues(vector<vector<ScoreComponentCollection> > &featureValues) {
for (size_t i = 0; i < featureValues.size(); ++i) {
for (size_t j = 0; j < featureValues[i].size(); ++j) {
cerr << featureValues[i][j] << endl;
}
}
cerr << endl;
}
void ignoreCoreFeatures(vector<vector<ScoreComponentCollection> > &featureValues, ProducerWeightMap &coreWeightMap) {
for (size_t i = 0; i < featureValues.size(); ++i)
for (size_t j = 0; j < featureValues[i].size(); ++j) {
// set all core features to 0
ProducerWeightMap::iterator p;
for(p = coreWeightMap.begin(); p!=coreWeightMap.end(); ++p) {
if ((p->first)->GetNumScoreComponents() == 1)
featureValues[i][j].Assign(p->first, 0);
else {
vector< float > weights;
for (size_t k=0; k < (p->first)->GetNumScoreComponents(); ++k)
weights.push_back(0);
featureValues[i][j].Assign(p->first, weights);
}
}
}
}
void takeLogs(vector<vector<ScoreComponentCollection> > &featureValues, size_t base) {
for (size_t i = 0; i < featureValues.size(); ++i) {
for (size_t j = 0; j < featureValues[i].size(); ++j) {
featureValues[i][j].LogCoreFeatures(base);
}
}
}
void deleteTranslations(vector<vector<const Word*> > &translations) {
for (size_t i = 0; i < translations.size(); ++i) {
for (size_t j = 0; j < translations[i].size(); ++j) {
delete translations[i][j];
}
}
}