mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-05 02:22:21 +03:00
187 lines
7.0 KiB
C++
187 lines
7.0 KiB
C++
/***********************************************************************
|
|
Moses - factored phrase-based language decoder
|
|
Copyright (C) 2013- University of Edinburgh
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
***********************************************************************/
|
|
|
|
#include <boost/lexical_cast.hpp>
|
|
#include <boost/unordered_set.hpp>
|
|
|
|
#include "util/exception.hh"
|
|
#include "util/tokenize_piece.hh"
|
|
#include "moses/TranslationModel/PhraseDictionaryInterpolated.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace Moses
|
|
{
|
|
|
|
PhraseDictionaryInterpolated::PhraseDictionaryInterpolated
|
|
(size_t numScoreComponent,size_t numInputScores,const PhraseDictionaryFeature* feature):
|
|
PhraseDictionary(numScoreComponent,feature),
|
|
m_targetPhrases(NULL),
|
|
m_languageModels(NULL) {}
|
|
|
|
bool PhraseDictionaryInterpolated::Load(
|
|
const std::vector<FactorType> &input
|
|
, const std::vector<FactorType> &output
|
|
, const std::vector<std::string>& config
|
|
, const std::vector<float> &weightT
|
|
, size_t tableLimit
|
|
, const LMList &languageModels
|
|
, float weightWP)
|
|
{
|
|
|
|
m_languageModels = &languageModels;
|
|
m_weightT = weightT;
|
|
m_tableLimit = tableLimit;
|
|
m_weightWP = weightWP;
|
|
|
|
//The config should be as follows:
|
|
//0-3: type factor factor num-components (as usual)
|
|
//4: combination mode (e.g. naive)
|
|
//5-(length-2): List of phrase-table files
|
|
//length-1: Weight string, in the same format as used for tmcombine
|
|
|
|
UTIL_THROW_IF(config.size() < 7, util::Exception, "Missing fields from phrase table configuration: expected at least 7");
|
|
UTIL_THROW_IF(config[4] != "naive", util::Exception, "Unsupported combination mode: '" << config[4] << "'");
|
|
|
|
// Create the dictionaries
|
|
for (size_t i = 5; i < config.size()-1; ++i) {
|
|
m_dictionaries.push_back(DictionaryHandle(new PhraseDictionaryTreeAdaptor(
|
|
GetFeature()->GetNumScoreComponents(),
|
|
GetFeature()->GetNumInputScores(),
|
|
GetFeature())));
|
|
bool ret = m_dictionaries.back()->Load(
|
|
input,
|
|
output,
|
|
config[i],
|
|
weightT,
|
|
0,
|
|
languageModels,
|
|
weightWP);
|
|
if (!ret) return ret;
|
|
}
|
|
|
|
//Parse the weight strings
|
|
for (util::TokenIter<util::SingleCharacter, false> featureWeights(config.back(), util::SingleCharacter(';')); featureWeights; ++featureWeights) {
|
|
m_weights.push_back(vector<float>());
|
|
float sum = 0;
|
|
for (util::TokenIter<util::SingleCharacter, false> tableWeights(*featureWeights, util::SingleCharacter(',')); tableWeights; ++tableWeights) {
|
|
const float weight = boost::lexical_cast<float>(*tableWeights);
|
|
m_weights.back().push_back(weight);
|
|
sum += weight;
|
|
}
|
|
UTIL_THROW_IF(m_weights.back().size() != m_dictionaries.size(), util::Exception,
|
|
"Number of weights (" << m_weights.back().size() <<
|
|
") does not match number of dictionaries to combine (" << m_dictionaries.size() << ")");
|
|
UTIL_THROW_IF(abs(sum - 1) > 0.01, util::Exception, "Weights not normalised");
|
|
|
|
}
|
|
|
|
//check number of weight sets. Make sure there is a weight for every score component
|
|
//except for the last - which is assumed to be the phrase penalty.
|
|
UTIL_THROW_IF(m_weights.size() != 1 && m_weights.size() != GetFeature()->GetNumScoreComponents()-1, util::Exception, "Unexpected number of weight sets");
|
|
//if 1 weight set, then repeat
|
|
if (m_weights.size() == 1) {
|
|
while(m_weights.size() < GetFeature()->GetNumScoreComponents()-1) {
|
|
m_weights.push_back(m_weights[0]);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void PhraseDictionaryInterpolated::InitializeForInput(InputType const& source)
|
|
{
|
|
for (size_t i = 0; i < m_dictionaries.size(); ++i) {
|
|
m_dictionaries[i]->InitializeForInput(source);
|
|
}
|
|
}
|
|
|
|
typedef
|
|
boost::unordered_set<TargetPhrase*,PhrasePtrHasher,PhrasePtrComparator> PhraseSet;
|
|
|
|
|
|
const TargetPhraseCollection*
|
|
PhraseDictionaryInterpolated::GetTargetPhraseCollection(const Phrase& src) const
|
|
{
|
|
|
|
delete m_targetPhrases;
|
|
m_targetPhrases = new TargetPhraseCollection();
|
|
PhraseSet allPhrases;
|
|
vector<PhraseSet> phrasesByTable(m_dictionaries.size());
|
|
for (size_t i = 0; i < m_dictionaries.size(); ++i) {
|
|
const TargetPhraseCollection* phrases = m_dictionaries[i]->GetTargetPhraseCollection(src);
|
|
if (phrases) {
|
|
for (TargetPhraseCollection::const_iterator j = phrases->begin();
|
|
j != phrases->end(); ++j) {
|
|
allPhrases.insert(*j);
|
|
phrasesByTable[i].insert(*j);
|
|
}
|
|
}
|
|
}
|
|
ScoreComponentCollection sparseVector;
|
|
for (PhraseSet::const_iterator i = allPhrases.begin(); i != allPhrases.end(); ++i) {
|
|
TargetPhrase* combinedPhrase = new TargetPhrase((Phrase)**i);
|
|
//combinedPhrase->ResetScore();
|
|
//cerr << *combinedPhrase << " " << combinedPhrase->GetScoreBreakdown() << endl;
|
|
combinedPhrase->SetSourcePhrase((*i)->GetSourcePhrase());
|
|
combinedPhrase->SetAlignTerm(&((*i)->GetAlignTerm()));
|
|
combinedPhrase->SetAlignNonTerm(&((*i)->GetAlignTerm()));
|
|
Scores combinedScores(GetFeature()->GetNumScoreComponents());
|
|
for (size_t j = 0; j < phrasesByTable.size(); ++j) {
|
|
PhraseSet::const_iterator tablePhrase = phrasesByTable[j].find(combinedPhrase);
|
|
if (tablePhrase != phrasesByTable[j].end()) {
|
|
Scores tableScores = (*tablePhrase)->GetScoreBreakdown()
|
|
.GetScoresForProducer(GetFeature());
|
|
//cerr << "Scores from " << j << " table: ";
|
|
for (size_t k = 0; k < tableScores.size()-1; ++k) {
|
|
//cerr << tableScores[k] << "(" << exp(tableScores[k]) << ") ";
|
|
combinedScores[k] += m_weights[k][j] * exp(tableScores[k]);
|
|
//cerr << m_weights[k][j] * exp(tableScores[k]) << " ";
|
|
}
|
|
//cerr << endl;
|
|
}
|
|
}
|
|
//map back to log space
|
|
//cerr << "Combined ";
|
|
for (size_t k = 0; k < combinedScores.size()-1; ++k) {
|
|
//cerr << combinedScores[k] << " ";
|
|
combinedScores[k] = log(combinedScores[k]);
|
|
//cerr << combinedScores[k] << " ";
|
|
}
|
|
//cerr << endl;
|
|
combinedScores.back() = 1; //assume last is penalty
|
|
combinedPhrase->SetScore(
|
|
GetFeature(),
|
|
combinedScores,
|
|
sparseVector,
|
|
m_weightT,
|
|
m_weightWP,
|
|
*m_languageModels);
|
|
//cerr << *combinedPhrase << " " << combinedPhrase->GetScoreBreakdown() << endl;
|
|
m_targetPhrases->Add(combinedPhrase);
|
|
}
|
|
|
|
m_targetPhrases->Prune(true,m_tableLimit);
|
|
|
|
|
|
return m_targetPhrases;
|
|
}
|
|
|
|
}
|