mosesdecoder/moses/FF/GlobalLexicalModelUnlimited.cpp
2015-01-14 11:07:42 +00:00

336 lines
13 KiB
C++

#include "GlobalLexicalModelUnlimited.h"
#include <fstream>
#include "moses/StaticData.h"
#include "moses/InputFileStream.h"
#include "moses/Hypothesis.h"
#include "util/string_piece_hash.hh"
using namespace std;
namespace Moses
{
GlobalLexicalModelUnlimited::GlobalLexicalModelUnlimited(const std::string &line)
:StatelessFeatureFunction(0, line)
{
UTIL_THROW(util::Exception,
"GlobalLexicalModelUnlimited hasn't been refactored for new feature function framework yet"); // TODO need to update arguments to key=value
const vector<string> modelSpec = Tokenize(line);
for (size_t i = 0; i < modelSpec.size(); i++ ) {
bool ignorePunctuation = true, biasFeature = false, restricted = false;
size_t context = 0;
string filenameSource, filenameTarget;
vector< string > factors;
vector< string > spec = Tokenize(modelSpec[i]," ");
// read optional punctuation and bias specifications
if (spec.size() > 0) {
if (spec.size() != 2 && spec.size() != 3 && spec.size() != 4 && spec.size() != 6) {
std::cerr << "Format of glm feature is <factor-src>-<factor-tgt> [ignore-punct] [use-bias] "
<< "[context-type] [filename-src filename-tgt]";
//return false;
}
factors = Tokenize(spec[0],"-");
if (spec.size() >= 2)
ignorePunctuation = Scan<size_t>(spec[1]);
if (spec.size() >= 3)
biasFeature = Scan<size_t>(spec[2]);
if (spec.size() >= 4)
context = Scan<size_t>(spec[3]);
if (spec.size() == 6) {
filenameSource = spec[4];
filenameTarget = spec[5];
restricted = true;
}
} else
factors = Tokenize(modelSpec[i],"-");
if ( factors.size() != 2 ) {
std::cerr << "Wrong factor definition for global lexical model unlimited: " << modelSpec[i];
//return false;
}
const vector<FactorType> inputFactors = Tokenize<FactorType>(factors[0],",");
const vector<FactorType> outputFactors = Tokenize<FactorType>(factors[1],",");
throw runtime_error("GlobalLexicalModelUnlimited should be reimplemented as a stateful feature");
GlobalLexicalModelUnlimited* glmu = NULL; // new GlobalLexicalModelUnlimited(inputFactors, outputFactors, biasFeature, ignorePunctuation, context);
if (restricted) {
cerr << "loading word translation word lists from " << filenameSource << " and " << filenameTarget << endl;
if (!glmu->Load(filenameSource, filenameTarget)) {
std::cerr << "Unable to load word lists for word translation feature from files "
<< filenameSource
<< " and "
<< filenameTarget;
//return false;
}
}
}
}
bool GlobalLexicalModelUnlimited::Load(const std::string &filePathSource,
const std::string &filePathTarget)
{
// restricted source word vocabulary
ifstream inFileSource(filePathSource.c_str());
if (!inFileSource) {
cerr << "could not open file " << filePathSource << endl;
return false;
}
std::string line;
while (getline(inFileSource, line)) {
m_vocabSource.insert(line);
}
inFileSource.close();
// restricted target word vocabulary
ifstream inFileTarget(filePathTarget.c_str());
if (!inFileTarget) {
cerr << "could not open file " << filePathTarget << endl;
return false;
}
while (getline(inFileTarget, line)) {
m_vocabTarget.insert(line);
}
inFileTarget.close();
m_unrestricted = false;
return true;
}
void GlobalLexicalModelUnlimited::InitializeForInput( Sentence const& in )
{
m_local.reset(new ThreadLocalStorage);
m_local->input = &in;
}
void GlobalLexicalModelUnlimited::EvaluateWhenApplied(const Hypothesis& cur_hypo, ScoreComponentCollection* accumulator) const
{
const Sentence& input = *(m_local->input);
const TargetPhrase& targetPhrase = cur_hypo.GetCurrTargetPhrase();
for(size_t targetIndex = 0; targetIndex < targetPhrase.GetSize(); targetIndex++ ) {
StringPiece targetString = targetPhrase.GetWord(targetIndex).GetString(0); // TODO: change for other factors
if (m_ignorePunctuation) {
// check if first char is punctuation
char firstChar = targetString[0];
CharHash::const_iterator charIterator = m_punctuationHash.find( firstChar );
if(charIterator != m_punctuationHash.end())
continue;
}
if (m_biasFeature) {
stringstream feature;
feature << "glm_";
feature << targetString;
feature << "~";
feature << "**BIAS**";
accumulator->SparsePlusEquals(feature.str(), 1);
}
boost::unordered_set<uint64_t> alreadyScored;
for(size_t sourceIndex = 0; sourceIndex < input.GetSize(); sourceIndex++ ) {
const StringPiece sourceString = input.GetWord(sourceIndex).GetString(0);
// TODO: change for other factors
if (m_ignorePunctuation) {
// check if first char is punctuation
char firstChar = sourceString[0];
CharHash::const_iterator charIterator = m_punctuationHash.find( firstChar );
if(charIterator != m_punctuationHash.end())
continue;
}
const uint64_t sourceHash = util::MurmurHashNative(sourceString.data(), sourceString.size());
if ( alreadyScored.find(sourceHash) == alreadyScored.end()) {
bool sourceExists, targetExists;
if (!m_unrestricted) {
sourceExists = FindStringPiece(m_vocabSource, sourceString ) != m_vocabSource.end();
targetExists = FindStringPiece(m_vocabTarget, targetString) != m_vocabTarget.end();
}
// no feature if vocab is in use and both words are not in restricted vocabularies
if (m_unrestricted || (sourceExists && targetExists)) {
if (m_sourceContext) {
if (sourceIndex == 0) {
// add <s> trigger feature for source
stringstream feature;
feature << "glm_";
feature << targetString;
feature << "~";
feature << "<s>,";
feature << sourceString;
accumulator->SparsePlusEquals(feature.str(), 1);
alreadyScored.insert(sourceHash);
}
// add source words to the right of current source word as context
for(int contextIndex = sourceIndex+1; contextIndex < input.GetSize(); contextIndex++ ) {
StringPiece contextString = input.GetWord(contextIndex).GetString(0); // TODO: change for other factors
bool contextExists;
if (!m_unrestricted)
contextExists = FindStringPiece(m_vocabSource, contextString ) != m_vocabSource.end();
if (m_unrestricted || contextExists) {
stringstream feature;
feature << "glm_";
feature << targetString;
feature << "~";
feature << sourceString;
feature << ",";
feature << contextString;
accumulator->SparsePlusEquals(feature.str(), 1);
alreadyScored.insert(sourceHash);
}
}
} else if (m_biphrase) {
// --> look backwards for constructing context
int globalTargetIndex = cur_hypo.GetSize() - targetPhrase.GetSize() + targetIndex;
// 1) source-target pair, trigger source word (can be discont.) and adjacent target word (bigram)
StringPiece targetContext;
if (globalTargetIndex > 0)
targetContext = cur_hypo.GetWord(globalTargetIndex-1).GetString(0); // TODO: change for other factors
else
targetContext = "<s>";
if (sourceIndex == 0) {
StringPiece sourceTrigger = "<s>";
AddFeature(accumulator, sourceTrigger, sourceString,
targetContext, targetString);
} else
for(int contextIndex = sourceIndex-1; contextIndex >= 0; contextIndex-- ) {
StringPiece sourceTrigger = input.GetWord(contextIndex).GetString(0); // TODO: change for other factors
bool sourceTriggerExists = false;
if (!m_unrestricted)
sourceTriggerExists = FindStringPiece(m_vocabSource, sourceTrigger ) != m_vocabSource.end();
if (m_unrestricted || sourceTriggerExists)
AddFeature(accumulator, sourceTrigger, sourceString,
targetContext, targetString);
}
// 2) source-target pair, adjacent source word (bigram) and trigger target word (can be discont.)
StringPiece sourceContext;
if (sourceIndex-1 >= 0)
sourceContext = input.GetWord(sourceIndex-1).GetString(0); // TODO: change for other factors
else
sourceContext = "<s>";
if (globalTargetIndex == 0) {
string targetTrigger = "<s>";
AddFeature(accumulator, sourceContext, sourceString,
targetTrigger, targetString);
} else
for(int globalContextIndex = globalTargetIndex-1; globalContextIndex >= 0; globalContextIndex-- ) {
StringPiece targetTrigger = cur_hypo.GetWord(globalContextIndex).GetString(0); // TODO: change for other factors
bool targetTriggerExists = false;
if (!m_unrestricted)
targetTriggerExists = FindStringPiece(m_vocabTarget, targetTrigger ) != m_vocabTarget.end();
if (m_unrestricted || targetTriggerExists)
AddFeature(accumulator, sourceContext, sourceString,
targetTrigger, targetString);
}
} else if (m_bitrigger) {
// allow additional discont. triggers on both sides
int globalTargetIndex = cur_hypo.GetSize() - targetPhrase.GetSize() + targetIndex;
if (sourceIndex == 0) {
StringPiece sourceTrigger = "<s>";
bool sourceTriggerExists = true;
if (globalTargetIndex == 0) {
string targetTrigger = "<s>";
bool targetTriggerExists = true;
if (m_unrestricted || (sourceTriggerExists && targetTriggerExists))
AddFeature(accumulator, sourceTrigger, sourceString,
targetTrigger, targetString);
} else {
// iterate backwards over target
for(int globalContextIndex = globalTargetIndex-1; globalContextIndex >= 0; globalContextIndex-- ) {
StringPiece targetTrigger = cur_hypo.GetWord(globalContextIndex).GetString(0); // TODO: change for other factors
bool targetTriggerExists = false;
if (!m_unrestricted)
targetTriggerExists = FindStringPiece(m_vocabTarget, targetTrigger ) != m_vocabTarget.end();
if (m_unrestricted || (sourceTriggerExists && targetTriggerExists))
AddFeature(accumulator, sourceTrigger, sourceString,
targetTrigger, targetString);
}
}
}
// iterate over both source and target
else {
// iterate backwards over source
for(int contextIndex = sourceIndex-1; contextIndex >= 0; contextIndex-- ) {
StringPiece sourceTrigger = input.GetWord(contextIndex).GetString(0); // TODO: change for other factors
bool sourceTriggerExists = false;
if (!m_unrestricted)
sourceTriggerExists = FindStringPiece(m_vocabSource, sourceTrigger ) != m_vocabSource.end();
if (globalTargetIndex == 0) {
string targetTrigger = "<s>";
bool targetTriggerExists = true;
if (m_unrestricted || (sourceTriggerExists && targetTriggerExists))
AddFeature(accumulator, sourceTrigger, sourceString,
targetTrigger, targetString);
} else {
// iterate backwards over target
for(int globalContextIndex = globalTargetIndex-1; globalContextIndex >= 0; globalContextIndex-- ) {
StringPiece targetTrigger = cur_hypo.GetWord(globalContextIndex).GetString(0); // TODO: change for other factors
bool targetTriggerExists = false;
if (!m_unrestricted)
targetTriggerExists = FindStringPiece(m_vocabTarget, targetTrigger ) != m_vocabTarget.end();
if (m_unrestricted || (sourceTriggerExists && targetTriggerExists))
AddFeature(accumulator, sourceTrigger, sourceString,
targetTrigger, targetString);
}
}
}
}
} else {
stringstream feature;
feature << "glm_";
feature << targetString;
feature << "~";
feature << sourceString;
accumulator->SparsePlusEquals(feature.str(), 1);
alreadyScored.insert(sourceHash);
}
}
}
}
}
}
void GlobalLexicalModelUnlimited::AddFeature(ScoreComponentCollection* accumulator,
StringPiece sourceTrigger, StringPiece sourceWord,
StringPiece targetTrigger, StringPiece targetWord) const
{
stringstream feature;
feature << "glm_";
feature << targetTrigger;
feature << ",";
feature << targetWord;
feature << "~";
feature << sourceTrigger;
feature << ",";
feature << sourceWord;
accumulator->SparsePlusEquals(feature.str(), 1);
}
}