mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-26 21:42:19 +03:00
1213 lines
39 KiB
C++
1213 lines
39 KiB
C++
// $Id$
|
|
// vim:tabstop=2
|
|
|
|
/***********************************************************************
|
|
Moses - factored phrase-based language decoder
|
|
Copyright (C) 2006 University of Edinburgh
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
***********************************************************************/
|
|
|
|
#include <string>
|
|
|
|
#include "TypeDef.h"
|
|
#include "moses/FF/WordPenaltyProducer.h"
|
|
#include "moses/FF/UnknownWordPenaltyProducer.h"
|
|
#include "moses/FF/InputFeature.h"
|
|
|
|
#include "DecodeStepTranslation.h"
|
|
#include "DecodeStepGeneration.h"
|
|
#include "GenerationDictionary.h"
|
|
#include "StaticData.h"
|
|
#include "Util.h"
|
|
#include "FactorCollection.h"
|
|
#include "Timer.h"
|
|
#include "UserMessage.h"
|
|
#include "TranslationOption.h"
|
|
#include "DecodeGraph.h"
|
|
#include "InputFileStream.h"
|
|
#include "ScoreComponentCollection.h"
|
|
#include "DecodeGraph.h"
|
|
#include "TranslationModel/PhraseDictionary.h"
|
|
#include "TranslationModel/PhraseDictionaryTreeAdaptor.h"
|
|
|
|
#ifdef WITH_THREADS
|
|
#include <boost/thread.hpp>
|
|
#endif
|
|
|
|
using namespace std;
|
|
|
|
namespace Moses
|
|
{
|
|
bool g_mosesDebug = false;
|
|
|
|
StaticData StaticData::s_instance;
|
|
|
|
StaticData::StaticData()
|
|
:m_sourceStartPosMattersForRecombination(false)
|
|
,m_inputType(SentenceInput)
|
|
,m_onlyDistinctNBest(false)
|
|
,m_needAlignmentInfo(false)
|
|
,m_lmEnableOOVFeature(false)
|
|
,m_isAlwaysCreateDirectTranslationOption(false)
|
|
,m_currentWeightSetting("default")
|
|
,m_treeStructure(NULL)
|
|
,m_useS2TDecoder(false)
|
|
{
|
|
m_xmlBrackets.first="<";
|
|
m_xmlBrackets.second=">";
|
|
|
|
// memory pools
|
|
Phrase::InitializeMemPool();
|
|
}
|
|
|
|
StaticData::~StaticData()
|
|
{
|
|
RemoveAllInColl(m_decodeGraphs);
|
|
|
|
/*
|
|
const std::vector<FeatureFunction*> &producers = FeatureFunction::GetFeatureFunctions();
|
|
for(size_t i=0;i<producers.size();++i) {
|
|
FeatureFunction *ff = producers[i];
|
|
delete ff;
|
|
}
|
|
*/
|
|
|
|
// memory pools
|
|
Phrase::FinalizeMemPool();
|
|
}
|
|
|
|
bool StaticData::LoadDataStatic(Parameter *parameter, const std::string &execPath)
|
|
{
|
|
s_instance.SetExecPath(execPath);
|
|
return s_instance.LoadData(parameter);
|
|
}
|
|
|
|
bool StaticData::LoadData(Parameter *parameter)
|
|
{
|
|
ResetUserTime();
|
|
m_parameter = parameter;
|
|
|
|
const PARAM_VEC *params;
|
|
|
|
// verbose level
|
|
m_parameter->SetParameter(m_verboseLevel, "verbose", (size_t) 1);
|
|
|
|
// to cube or not to cube
|
|
m_parameter->SetParameter(m_searchAlgorithm, "search-algorithm", Normal);
|
|
|
|
if (IsChart())
|
|
LoadChartDecodingParameters();
|
|
|
|
// input type has to be specified BEFORE loading the phrase tables!
|
|
m_parameter->SetParameter(m_inputType, "inputtype", SentenceInput);
|
|
|
|
std::string s_it = "text input";
|
|
if (m_inputType == 1) {
|
|
s_it = "confusion net";
|
|
}
|
|
if (m_inputType == 2) {
|
|
s_it = "word lattice";
|
|
}
|
|
if (m_inputType == 3) {
|
|
s_it = "tree";
|
|
}
|
|
VERBOSE(2,"input type is: "<<s_it<<"\n");
|
|
|
|
m_parameter->SetParameter(m_recoverPath, "recover-input-path", false);
|
|
if (m_recoverPath && m_inputType == SentenceInput) {
|
|
TRACE_ERR("--recover-input-path should only be used with confusion net or word lattice input!\n");
|
|
m_recoverPath = false;
|
|
}
|
|
|
|
// factor delimiter
|
|
m_parameter->SetParameter<string>(m_factorDelimiter, "factor-delimiter", "|");
|
|
if (m_factorDelimiter == "none") {
|
|
m_factorDelimiter = "";
|
|
}
|
|
|
|
SetBooleanParameter( m_continuePartialTranslation, "continue-partial-translation", false );
|
|
SetBooleanParameter( m_outputHypoScore, "output-hypo-score", false );
|
|
|
|
//word-to-word alignment
|
|
// alignments
|
|
SetBooleanParameter( m_PrintAlignmentInfo, "print-alignment-info", false );
|
|
if (m_PrintAlignmentInfo) {
|
|
m_needAlignmentInfo = true;
|
|
}
|
|
|
|
m_parameter->SetParameter(m_wordAlignmentSort, "sort-word-alignment", NoSort);
|
|
|
|
SetBooleanParameter( m_PrintAlignmentInfoNbest, "print-alignment-info-in-n-best", false );
|
|
if (m_PrintAlignmentInfoNbest) {
|
|
m_needAlignmentInfo = true;
|
|
}
|
|
|
|
params = m_parameter->GetParam2("alignment-output-file");
|
|
if (params && params->size()) {
|
|
m_alignmentOutputFile = Scan<std::string>(params->at(0));
|
|
m_needAlignmentInfo = true;
|
|
}
|
|
|
|
// n-best
|
|
params = m_parameter->GetParam2("n-best-list");
|
|
if (params) {
|
|
if (params->size() >= 2) {
|
|
m_nBestFilePath = params->at(0);
|
|
m_nBestSize = Scan<size_t>( params->at(1) );
|
|
m_onlyDistinctNBest=(params->size()>2 && params->at(2)=="distinct");
|
|
}
|
|
else {
|
|
UserMessage::Add(string("wrong format for switch -n-best-list file size [disinct]"));
|
|
return false;
|
|
}
|
|
} else {
|
|
m_nBestSize = 0;
|
|
}
|
|
|
|
m_parameter->SetParameter<size_t>(m_nBestFactor, "n-best-factor", 20);
|
|
|
|
//lattice samples
|
|
params = m_parameter->GetParam2("lattice-samples");
|
|
if (params) {
|
|
if (params->size() ==2 ) {
|
|
m_latticeSamplesFilePath = params->at(0);
|
|
m_latticeSamplesSize = Scan<size_t>(params->at(1));
|
|
}
|
|
else {
|
|
UserMessage::Add(string("wrong format for switch -lattice-samples file size"));
|
|
return false;
|
|
}
|
|
}
|
|
else {
|
|
m_latticeSamplesSize = 0;
|
|
}
|
|
|
|
// word graph
|
|
params = m_parameter->GetParam2("output-word-graph");
|
|
if (params && params->size() == 2)
|
|
m_outputWordGraph = true;
|
|
else
|
|
m_outputWordGraph = false;
|
|
|
|
// search graph
|
|
params = m_parameter->GetParam2("output-search-graph");
|
|
if (params && params->size()) {
|
|
if (params->size() != 1) {
|
|
UserMessage::Add(string("ERROR: wrong format for switch -output-search-graph file"));
|
|
return false;
|
|
}
|
|
m_outputSearchGraph = true;
|
|
}
|
|
// ... in extended format
|
|
else if (m_parameter->GetParam2("output-search-graph-extended") &&
|
|
m_parameter->GetParam2("output-search-graph-extended")->size()) {
|
|
if (m_parameter->GetParam2("output-search-graph-extended")->size() != 1) {
|
|
UserMessage::Add(string("ERROR: wrong format for switch -output-search-graph-extended file"));
|
|
return false;
|
|
}
|
|
m_outputSearchGraph = true;
|
|
m_outputSearchGraphExtended = true;
|
|
} else {
|
|
m_outputSearchGraph = false;
|
|
}
|
|
|
|
params = m_parameter->GetParam2("output-search-graph-slf");
|
|
if (params && params->size()) {
|
|
m_outputSearchGraphSLF = true;
|
|
} else {
|
|
m_outputSearchGraphSLF = false;
|
|
}
|
|
|
|
params = m_parameter->GetParam2("output-search-graph-hypergraph");
|
|
if (params && params->size()) {
|
|
m_outputSearchGraphHypergraph = true;
|
|
} else {
|
|
m_outputSearchGraphHypergraph = false;
|
|
}
|
|
|
|
#ifdef HAVE_PROTOBUF
|
|
params = m_parameter->GetParam2("output-search-graph-pb");
|
|
if (params && params->size()) {
|
|
if (params->size() != 1) {
|
|
UserMessage::Add(string("ERROR: wrong format for switch -output-search-graph-pb path"));
|
|
return false;
|
|
}
|
|
m_outputSearchGraphPB = true;
|
|
} else
|
|
m_outputSearchGraphPB = false;
|
|
#endif
|
|
|
|
SetBooleanParameter( m_unprunedSearchGraph, "unpruned-search-graph", false );
|
|
SetBooleanParameter( m_includeLHSInSearchGraph, "include-lhs-in-search-graph", false );
|
|
|
|
m_parameter->SetParameter<string>(m_outputUnknownsFile, "output-unknowns", "");
|
|
|
|
// include feature names in the n-best list
|
|
SetBooleanParameter( m_labeledNBestList, "labeled-n-best-list", true );
|
|
|
|
// include word alignment in the n-best list
|
|
SetBooleanParameter( m_nBestIncludesSegmentation, "include-segmentation-in-n-best", false );
|
|
|
|
// printing source phrase spans
|
|
SetBooleanParameter( m_reportSegmentation, "report-segmentation", false );
|
|
SetBooleanParameter( m_reportSegmentationEnriched, "report-segmentation-enriched", false );
|
|
|
|
// print all factors of output translations
|
|
SetBooleanParameter( m_reportAllFactors, "report-all-factors", false );
|
|
|
|
// print all factors of output translations
|
|
SetBooleanParameter( m_reportAllFactorsNBest, "report-all-factors-in-n-best", false );
|
|
|
|
//input factors
|
|
params = m_parameter->GetParam2("input-factors");
|
|
if (params) {
|
|
m_inputFactorOrder = Scan<FactorType>(*params);
|
|
}
|
|
if(m_inputFactorOrder.empty()) {
|
|
m_inputFactorOrder.push_back(0);
|
|
}
|
|
|
|
//output factors
|
|
params = m_parameter->GetParam2("output-factors");
|
|
if (params) {
|
|
m_outputFactorOrder = Scan<FactorType>(*params);
|
|
}
|
|
if(m_outputFactorOrder.empty()) {
|
|
// default. output factor 0
|
|
m_outputFactorOrder.push_back(0);
|
|
}
|
|
|
|
//source word deletion
|
|
SetBooleanParameter(m_wordDeletionEnabled, "phrase-drop-allowed", false );
|
|
|
|
//Disable discarding
|
|
SetBooleanParameter(m_disableDiscarding, "disable-discarding", false);
|
|
|
|
//Print All Derivations
|
|
SetBooleanParameter(m_printAllDerivations , "print-all-derivations", false );
|
|
|
|
// additional output
|
|
m_parameter->SetParameter<string>(m_detailedTranslationReportingFilePath, "translation-details", "");
|
|
m_parameter->SetParameter<string>(m_detailedTreeFragmentsTranslationReportingFilePath, "tree-translation-details", "");
|
|
|
|
//DIMw
|
|
m_parameter->SetParameter<string>(m_detailedAllTranslationReportingFilePath, "translation-all-details", "");
|
|
|
|
// reordering constraints
|
|
m_parameter->SetParameter(m_maxDistortion, "distortion-limit", -1);
|
|
|
|
SetBooleanParameter(m_reorderingConstraint, "monotone-at-punctuation", false );
|
|
|
|
// settings for pruning
|
|
m_parameter->SetParameter(m_maxHypoStackSize, "stack", DEFAULT_MAX_HYPOSTACK_SIZE);
|
|
|
|
m_minHypoStackDiversity = 0;
|
|
params = m_parameter->GetParam2("stack-diversity");
|
|
if (params && params->size()) {
|
|
if (m_maxDistortion > 15) {
|
|
UserMessage::Add("stack diversity > 0 is not allowed for distortion limits larger than 15");
|
|
return false;
|
|
}
|
|
if (m_inputType == WordLatticeInput) {
|
|
UserMessage::Add("stack diversity > 0 is not allowed for lattice input");
|
|
return false;
|
|
}
|
|
m_minHypoStackDiversity = Scan<size_t>(params->at(0));
|
|
}
|
|
|
|
m_parameter->SetParameter(m_beamWidth, "beam-threshold", DEFAULT_BEAM_WIDTH);
|
|
m_beamWidth = TransformScore(m_beamWidth);
|
|
|
|
m_parameter->SetParameter(m_earlyDiscardingThreshold, "early-discarding-threshold", DEFAULT_EARLY_DISCARDING_THRESHOLD);
|
|
m_earlyDiscardingThreshold = TransformScore(m_earlyDiscardingThreshold);
|
|
|
|
m_parameter->SetParameter(m_translationOptionThreshold, "translation-option-threshold", DEFAULT_TRANSLATION_OPTION_THRESHOLD);
|
|
m_translationOptionThreshold = TransformScore(m_translationOptionThreshold);
|
|
|
|
m_parameter->SetParameter(m_maxNoTransOptPerCoverage, "max-trans-opt-per-coverage", DEFAULT_MAX_TRANS_OPT_SIZE);
|
|
m_parameter->SetParameter(m_maxNoPartTransOpt, "max-partial-trans-opt", DEFAULT_MAX_PART_TRANS_OPT_SIZE);
|
|
m_parameter->SetParameter(m_maxPhraseLength, "max-phrase-length", DEFAULT_MAX_PHRASE_LENGTH);
|
|
m_parameter->SetParameter(m_cubePruningPopLimit, "cube-pruning-pop-limit", DEFAULT_CUBE_PRUNING_POP_LIMIT);
|
|
m_parameter->SetParameter(m_cubePruningDiversity, "cube-pruning-diversity", DEFAULT_CUBE_PRUNING_DIVERSITY);
|
|
|
|
SetBooleanParameter(m_cubePruningLazyScoring, "cube-pruning-lazy-scoring", false);
|
|
|
|
// early distortion cost
|
|
SetBooleanParameter(m_useEarlyDistortionCost, "early-distortion-cost", false );
|
|
|
|
// unknown word processing
|
|
SetBooleanParameter(m_dropUnknown, "drop-unknown", false );
|
|
SetBooleanParameter(m_markUnknown, "mark-unknown", false );
|
|
|
|
SetBooleanParameter(m_lmEnableOOVFeature, "lmodel-oov-feature", false);
|
|
|
|
// minimum Bayes risk decoding
|
|
SetBooleanParameter(m_mbr, "minimum-bayes-risk", false );
|
|
m_parameter->SetParameter<size_t>(m_mbrSize, "mbr-size", 200);
|
|
m_parameter->SetParameter(m_mbrScale, "mbr-scale", 1.0f);
|
|
|
|
//lattice mbr
|
|
SetBooleanParameter(m_useLatticeMBR, "lminimum-bayes-risk", false );
|
|
if (m_useLatticeMBR && m_mbr) {
|
|
cerr << "Errror: Cannot use both n-best mbr and lattice mbr together" << endl;
|
|
return false;
|
|
}
|
|
|
|
//mira training
|
|
SetBooleanParameter(m_mira, "mira", false );
|
|
|
|
// lattice MBR
|
|
if (m_useLatticeMBR) m_mbr = true;
|
|
|
|
m_parameter->SetParameter<size_t>(m_lmbrPruning, "lmbr-pruning-factor", 30);
|
|
m_parameter->SetParameter(m_lmbrPrecision, "lmbr-p", 0.8f);
|
|
m_parameter->SetParameter(m_lmbrPRatio, "lmbr-r", 0.6f);
|
|
m_parameter->SetParameter(m_lmbrMapWeight, "lmbr-map-weight", 0.0f);
|
|
SetBooleanParameter(m_useLatticeHypSetForLatticeMBR, "lattice-hypo-set", false );
|
|
|
|
params = m_parameter->GetParam2("lmbr-thetas");
|
|
if (params) {
|
|
m_lmbrThetas = Scan<float>(*params);
|
|
}
|
|
|
|
//consensus decoding
|
|
SetBooleanParameter(m_useConsensusDecoding, "consensus-decoding", false );
|
|
if (m_useConsensusDecoding && m_mbr) {
|
|
cerr<< "Error: Cannot use consensus decoding together with mbr" << endl;
|
|
exit(1);
|
|
}
|
|
if (m_useConsensusDecoding) m_mbr=true;
|
|
|
|
SetBooleanParameter(m_defaultNonTermOnlyForEmptyRange, "default-non-term-for-empty-range-only", false );
|
|
SetBooleanParameter(m_printNBestTrees, "n-best-trees", false );
|
|
|
|
// S2T decoder
|
|
SetBooleanParameter(m_useS2TDecoder, "s2t", false );
|
|
m_parameter->SetParameter(m_s2tParsingAlgorithm, "s2t-parsing-algorithm", RecursiveCYKPlus);
|
|
|
|
// Compact phrase table and reordering model
|
|
SetBooleanParameter(m_minphrMemory, "minphr-memory", false );
|
|
SetBooleanParameter(m_minlexrMemory, "minlexr-memory", false );
|
|
|
|
m_parameter->SetParameter<size_t>(m_timeout_threshold, "time-out", -1);
|
|
m_timeout = (GetTimeoutThreshold() == (size_t)-1) ? false : true;
|
|
|
|
m_parameter->SetParameter<size_t>(m_lmcache_cleanup_threshold, "clean-lm-cache", 1);
|
|
|
|
m_threadCount = 1;
|
|
params = m_parameter->GetParam2("threads");
|
|
if (params && params->size()) {
|
|
if (params->at(0) == "all") {
|
|
#ifdef WITH_THREADS
|
|
m_threadCount = boost::thread::hardware_concurrency();
|
|
if (!m_threadCount) {
|
|
UserMessage::Add("-threads all specified but Boost doesn't know how many cores there are");
|
|
return false;
|
|
}
|
|
#else
|
|
UserMessage::Add("-threads all specified but moses not built with thread support");
|
|
return false;
|
|
#endif
|
|
} else {
|
|
m_threadCount = Scan<int>(params->at(0));
|
|
if (m_threadCount < 1) {
|
|
UserMessage::Add("Specify at least one thread.");
|
|
return false;
|
|
}
|
|
#ifndef WITH_THREADS
|
|
if (m_threadCount > 1) {
|
|
UserMessage::Add(std::string("Error: Thread count of ") + params->at(0) + " but moses not built with thread support");
|
|
return false;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
m_parameter->SetParameter<long>(m_startTranslationId, "start-translation-id", 0);
|
|
|
|
// use of xml in input
|
|
m_parameter->SetParameter<XmlInputType>(m_xmlInputType, "xml-input", XmlPassThrough);
|
|
|
|
// specify XML tags opening and closing brackets for XML option
|
|
params = m_parameter->GetParam2("xml-brackets");
|
|
if (params && params->size()) {
|
|
std::vector<std::string> brackets = Tokenize(params->at(0));
|
|
if(brackets.size()!=2) {
|
|
cerr << "invalid xml-brackets value, must specify exactly 2 blank-delimited strings for XML tags opening and closing brackets" << endl;
|
|
exit(1);
|
|
}
|
|
m_xmlBrackets.first= brackets[0];
|
|
m_xmlBrackets.second=brackets[1];
|
|
VERBOSE(1,"XML tags opening and closing brackets for XML input are: "
|
|
<< m_xmlBrackets.first << " and " << m_xmlBrackets.second << endl);
|
|
}
|
|
|
|
m_parameter->SetParameter(m_placeHolderFactor, "placeholder-factor", NOT_FOUND);
|
|
|
|
std::map<std::string, std::string> featureNameOverride = OverrideFeatureNames();
|
|
|
|
// all features
|
|
map<string, int> featureIndexMap;
|
|
|
|
params = m_parameter->GetParam2("feature");
|
|
for (size_t i = 0; params && i < params->size(); ++i) {
|
|
const string &line = Trim(params->at(i));
|
|
VERBOSE(1,"line=" << line << endl);
|
|
if (line.empty())
|
|
continue;
|
|
|
|
vector<string> toks = Tokenize(line);
|
|
|
|
string &feature = toks[0];
|
|
std::map<std::string, std::string>::const_iterator iter = featureNameOverride.find(feature);
|
|
if (iter == featureNameOverride.end()) {
|
|
// feature name not override
|
|
m_registry.Construct(feature, line);
|
|
}
|
|
else {
|
|
// replace feature name with new name
|
|
string newName = iter->second;
|
|
feature = newName;
|
|
string newLine = Join(" ", toks);
|
|
m_registry.Construct(newName, newLine);
|
|
}
|
|
}
|
|
|
|
NoCache();
|
|
OverrideFeatures();
|
|
|
|
if (m_parameter->GetParam2("show-weights") == NULL) {
|
|
LoadFeatureFunctions();
|
|
}
|
|
|
|
if (!LoadDecodeGraphs()) return false;
|
|
|
|
|
|
if (!CheckWeights()) {
|
|
return false;
|
|
}
|
|
|
|
//Add any other features here.
|
|
|
|
//Load extra feature weights
|
|
string weightFile;
|
|
m_parameter->SetParameter<string>(weightFile, "weight-file", "");
|
|
if (!weightFile.empty()) {
|
|
ScoreComponentCollection extraWeights;
|
|
if (!extraWeights.Load(weightFile)) {
|
|
UserMessage::Add("Unable to load weights from " + weightFile);
|
|
return false;
|
|
}
|
|
m_allWeights.PlusEquals(extraWeights);
|
|
}
|
|
|
|
//Load sparse features from config (overrules weight file)
|
|
LoadSparseWeightsFromConfig();
|
|
|
|
// alternate weight settings
|
|
params = m_parameter->GetParam2("alternate-weight-setting");
|
|
if (params && params->size()) {
|
|
if (!LoadAlternateWeightSettings()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void StaticData::SetBooleanParameter( bool ¶meter, string parameterName, bool defaultValue )
|
|
{
|
|
const PARAM_VEC *params = m_parameter->GetParam2(parameterName);
|
|
|
|
// default value if nothing is specified
|
|
parameter = defaultValue;
|
|
if (params == NULL) {
|
|
return;
|
|
}
|
|
|
|
// if parameter is just specified as, e.g. "-parameter" set it true
|
|
if (params->size() == 0) {
|
|
parameter = true;
|
|
}
|
|
// if paramter is specified "-parameter true" or "-parameter false"
|
|
else if (params->size() == 1) {
|
|
parameter = Scan<bool>( params->at(0));
|
|
}
|
|
}
|
|
|
|
void StaticData::SetWeight(const FeatureFunction* sp, float weight)
|
|
{
|
|
m_allWeights.Resize();
|
|
m_allWeights.Assign(sp,weight);
|
|
}
|
|
|
|
void StaticData::SetWeights(const FeatureFunction* sp, const std::vector<float>& weights)
|
|
{
|
|
m_allWeights.Resize();
|
|
m_allWeights.Assign(sp,weights);
|
|
}
|
|
|
|
void StaticData::LoadNonTerminals()
|
|
{
|
|
string defaultNonTerminals;
|
|
m_parameter->SetParameter<string>(defaultNonTerminals, "non-terminals", "X");
|
|
|
|
FactorCollection &factorCollection = FactorCollection::Instance();
|
|
|
|
m_inputDefaultNonTerminal.SetIsNonTerminal(true);
|
|
const Factor *sourceFactor = factorCollection.AddFactor(Input, 0, defaultNonTerminals, true);
|
|
m_inputDefaultNonTerminal.SetFactor(0, sourceFactor);
|
|
|
|
m_outputDefaultNonTerminal.SetIsNonTerminal(true);
|
|
const Factor *targetFactor = factorCollection.AddFactor(Output, 0, defaultNonTerminals, true);
|
|
m_outputDefaultNonTerminal.SetFactor(0, targetFactor);
|
|
|
|
// for unknown words
|
|
const PARAM_VEC *params = m_parameter->GetParam2("unknown-lhs");
|
|
if (params == NULL || params->size() == 0) {
|
|
UnknownLHSEntry entry(defaultNonTerminals, 0.0f);
|
|
m_unknownLHS.push_back(entry);
|
|
} else {
|
|
const string &filePath = params->at(0);
|
|
|
|
InputFileStream inStream(filePath);
|
|
string line;
|
|
while(getline(inStream, line)) {
|
|
vector<string> tokens = Tokenize(line);
|
|
UTIL_THROW_IF2(tokens.size() != 2,
|
|
"Incorrect unknown LHS format: " << line);
|
|
UnknownLHSEntry entry(tokens[0], Scan<float>(tokens[1]));
|
|
m_unknownLHS.push_back(entry);
|
|
// const Factor *targetFactor =
|
|
factorCollection.AddFactor(Output, 0, tokens[0], true);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void StaticData::LoadChartDecodingParameters()
|
|
{
|
|
LoadNonTerminals();
|
|
|
|
// source label overlap
|
|
m_parameter->SetParameter(m_sourceLabelOverlap, "source-label-overlap", SourceLabelOverlapAdd);
|
|
m_parameter->SetParameter(m_ruleLimit, "rule-limit", DEFAULT_MAX_TRANS_OPT_SIZE);
|
|
|
|
}
|
|
|
|
bool StaticData::LoadDecodeGraphs()
|
|
{
|
|
vector<string> mappingVector;
|
|
vector<size_t> maxChartSpans;
|
|
|
|
const PARAM_VEC *params;
|
|
|
|
params = m_parameter->GetParam2("mapping");
|
|
if (params && params->size()) {
|
|
mappingVector = *params;
|
|
}
|
|
|
|
params = m_parameter->GetParam2("max-chart-span");
|
|
if (params && params->size()) {
|
|
maxChartSpans = Scan<size_t>(*params);
|
|
}
|
|
|
|
const vector<PhraseDictionary*>& pts = PhraseDictionary::GetColl();
|
|
const vector<GenerationDictionary*>& gens = GenerationDictionary::GetColl();
|
|
|
|
const std::vector<FeatureFunction*> *featuresRemaining = &FeatureFunction::GetFeatureFunctions();
|
|
DecodeStep *prev = 0;
|
|
size_t prevDecodeGraphInd = 0;
|
|
|
|
for(size_t i=0; i<mappingVector.size(); i++) {
|
|
vector<string> token = Tokenize(mappingVector[i]);
|
|
size_t decodeGraphInd;
|
|
DecodeType decodeType;
|
|
size_t index;
|
|
if (token.size() == 2) {
|
|
decodeGraphInd = 0;
|
|
decodeType = token[0] == "T" ? Translate : Generate;
|
|
index = Scan<size_t>(token[1]);
|
|
} else if (token.size() == 3) {
|
|
// For specifying multiple translation model
|
|
decodeGraphInd = Scan<size_t>(token[0]);
|
|
//the vectorList index can only increment by one
|
|
UTIL_THROW_IF2(decodeGraphInd != prevDecodeGraphInd && decodeGraphInd != prevDecodeGraphInd + 1,
|
|
"Malformed mapping");
|
|
if (decodeGraphInd > prevDecodeGraphInd) {
|
|
prev = NULL;
|
|
}
|
|
|
|
if (prevDecodeGraphInd < decodeGraphInd) {
|
|
featuresRemaining = &FeatureFunction::GetFeatureFunctions();
|
|
}
|
|
|
|
decodeType = token[1] == "T" ? Translate : Generate;
|
|
index = Scan<size_t>(token[2]);
|
|
} else {
|
|
UTIL_THROW(util::Exception, "Malformed mapping");
|
|
}
|
|
|
|
DecodeStep* decodeStep = NULL;
|
|
switch (decodeType) {
|
|
case Translate:
|
|
if(index>=pts.size()) {
|
|
stringstream strme;
|
|
strme << "No phrase dictionary with index "
|
|
<< index << " available!";
|
|
UTIL_THROW(util::Exception, strme.str());
|
|
}
|
|
decodeStep = new DecodeStepTranslation(pts[index], prev, *featuresRemaining);
|
|
break;
|
|
case Generate:
|
|
if(index>=gens.size()) {
|
|
stringstream strme;
|
|
strme << "No generation dictionary with index "
|
|
<< index << " available!";
|
|
UTIL_THROW(util::Exception, strme.str());
|
|
}
|
|
decodeStep = new DecodeStepGeneration(gens[index], prev, *featuresRemaining);
|
|
break;
|
|
case InsertNullFertilityWord:
|
|
UTIL_THROW(util::Exception, "Please implement NullFertilityInsertion.");
|
|
break;
|
|
}
|
|
|
|
featuresRemaining = &decodeStep->GetFeaturesRemaining();
|
|
|
|
UTIL_THROW_IF2(decodeStep == NULL, "Null decode step");
|
|
if (m_decodeGraphs.size() < decodeGraphInd + 1) {
|
|
DecodeGraph *decodeGraph;
|
|
if (IsChart()) {
|
|
size_t maxChartSpan = (decodeGraphInd < maxChartSpans.size()) ? maxChartSpans[decodeGraphInd] : DEFAULT_MAX_CHART_SPAN;
|
|
VERBOSE(1,"max-chart-span: " << maxChartSpans[decodeGraphInd] << endl);
|
|
decodeGraph = new DecodeGraph(m_decodeGraphs.size(), maxChartSpan);
|
|
} else {
|
|
decodeGraph = new DecodeGraph(m_decodeGraphs.size());
|
|
}
|
|
|
|
m_decodeGraphs.push_back(decodeGraph); // TODO max chart span
|
|
}
|
|
|
|
m_decodeGraphs[decodeGraphInd]->Add(decodeStep);
|
|
prev = decodeStep;
|
|
prevDecodeGraphInd = decodeGraphInd;
|
|
}
|
|
|
|
// set maximum n-gram size for backoff approach to decoding paths
|
|
// default is always use subsequent paths (value = 0)
|
|
// if specified, record maxmimum unseen n-gram size
|
|
const vector<string> *backoffVector = m_parameter->GetParam2("decoding-graph-backoff");
|
|
for(size_t i=0; i<m_decodeGraphs.size() && backoffVector && i<backoffVector->size(); i++) {
|
|
DecodeGraph &decodeGraph = *m_decodeGraphs[i];
|
|
|
|
if (i < backoffVector->size()) {
|
|
decodeGraph.SetBackoff(Scan<size_t>(backoffVector->at(i)));
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void StaticData::ReLoadParameter()
|
|
{
|
|
UTIL_THROW(util::Exception, "completely redo. Too many hardcoded ff"); // TODO completely redo. Too many hardcoded ff
|
|
/*
|
|
m_verboseLevel = 1;
|
|
if (m_parameter->GetParam("verbose").size() == 1) {
|
|
m_verboseLevel = Scan<size_t>( m_parameter->GetParam("verbose")[0]);
|
|
}
|
|
|
|
// check whether "weight-u" is already set
|
|
if (m_parameter->isParamShortNameSpecified("u")) {
|
|
if (m_parameter->GetParamShortName("u").size() < 1 ) {
|
|
PARAM_VEC w(1,"1.0");
|
|
m_parameter->OverwriteParamShortName("u", w);
|
|
}
|
|
}
|
|
|
|
//loop over all ScoreProducer to update weights
|
|
|
|
std::vector<const ScoreProducer*>::const_iterator iterSP;
|
|
for (iterSP = transSystem.GetFeatureFunctions().begin() ; iterSP != transSystem.GetFeatureFunctions().end() ; ++iterSP) {
|
|
std::string paramShortName = (*iterSP)->GetScoreProducerWeightShortName();
|
|
vector<float> Weights = Scan<float>(m_parameter->GetParamShortName(paramShortName));
|
|
|
|
if (paramShortName == "d") { //basic distortion model takes the first weight
|
|
if ((*iterSP)->GetScoreProducerDescription() == "Distortion") {
|
|
Weights.resize(1); //take only the first element
|
|
} else { //lexicalized reordering model takes the other
|
|
Weights.erase(Weights.begin()); //remove the first element
|
|
}
|
|
// std::cerr << "this is the Distortion Score Producer -> " << (*iterSP)->GetScoreProducerDescription() << std::cerr;
|
|
// std::cerr << "this is the Distortion Score Producer; it has " << (*iterSP)->GetNumScoreComponents() << " weights"<< std::cerr;
|
|
// std::cerr << Weights << std::endl;
|
|
} else if (paramShortName == "tm") {
|
|
continue;
|
|
}
|
|
SetWeights(*iterSP, Weights);
|
|
}
|
|
|
|
// std::cerr << "There are " << m_phraseDictionary.size() << " m_phraseDictionaryfeatures" << std::endl;
|
|
|
|
const vector<float> WeightsTM = Scan<float>(m_parameter->GetParamShortName("tm"));
|
|
// std::cerr << "WeightsTM: " << WeightsTM << std::endl;
|
|
|
|
const vector<float> WeightsLM = Scan<float>(m_parameter->GetParamShortName("lm"));
|
|
// std::cerr << "WeightsLM: " << WeightsLM << std::endl;
|
|
|
|
size_t index_WeightTM = 0;
|
|
for(size_t i=0; i<transSystem.GetPhraseDictionaries().size(); ++i) {
|
|
PhraseDictionaryFeature &phraseDictionaryFeature = *m_phraseDictionary[i];
|
|
|
|
// std::cerr << "phraseDictionaryFeature.GetNumScoreComponents():" << phraseDictionaryFeature.GetNumScoreComponents() << std::endl;
|
|
// std::cerr << "phraseDictionaryFeature.GetNumInputScores():" << phraseDictionaryFeature.GetNumInputScores() << std::endl;
|
|
|
|
vector<float> tmp_weights;
|
|
for(size_t j=0; j<phraseDictionaryFeature.GetNumScoreComponents(); ++j)
|
|
tmp_weights.push_back(WeightsTM[index_WeightTM++]);
|
|
|
|
// std::cerr << tmp_weights << std::endl;
|
|
|
|
SetWeights(&phraseDictionaryFeature, tmp_weights);
|
|
}
|
|
*/
|
|
}
|
|
|
|
void StaticData::ReLoadBleuScoreFeatureParameter(float weight)
|
|
{
|
|
assert(false);
|
|
/*
|
|
//loop over ScoreProducers to update weights of BleuScoreFeature
|
|
|
|
std::vector<const ScoreProducer*>::const_iterator iterSP;
|
|
for (iterSP = transSystem.GetFeatureFunctions().begin() ; iterSP != transSystem.GetFeatureFunctions().end() ; ++iterSP) {
|
|
std::string paramShortName = (*iterSP)->GetScoreProducerWeightShortName();
|
|
if (paramShortName == "bl") {
|
|
SetWeight(*iterSP, weight);
|
|
break;
|
|
}
|
|
}
|
|
*/
|
|
}
|
|
|
|
// ScoreComponentCollection StaticData::GetAllWeightsScoreComponentCollection() const {}
|
|
// in ScoreComponentCollection.h
|
|
|
|
void StaticData::SetExecPath(const std::string &path)
|
|
{
|
|
/*
|
|
namespace fs = boost::filesystem;
|
|
|
|
fs::path full_path( fs::initial_path<fs::path>() );
|
|
|
|
full_path = fs::system_complete( fs::path( path ) );
|
|
|
|
//Without file name
|
|
m_binPath = full_path.parent_path().string();
|
|
*/
|
|
|
|
// NOT TESTED
|
|
size_t pos = path.rfind("/");
|
|
if (pos != string::npos) {
|
|
m_binPath = path.substr(0, pos);
|
|
}
|
|
VERBOSE(1,m_binPath << endl);
|
|
}
|
|
|
|
const string &StaticData::GetBinDirectory() const
|
|
{
|
|
return m_binPath;
|
|
}
|
|
|
|
float StaticData::GetWeightWordPenalty() const
|
|
{
|
|
float weightWP = GetWeight(&WordPenaltyProducer::Instance());
|
|
//VERBOSE(1, "Read weightWP from translation sytem: " << weightWP << std::endl);
|
|
return weightWP;
|
|
}
|
|
|
|
float StaticData::GetWeightUnknownWordPenalty() const
|
|
{
|
|
return GetWeight(&UnknownWordPenaltyProducer::Instance());
|
|
}
|
|
|
|
void StaticData::InitializeForInput(const InputType& source) const
|
|
{
|
|
const std::vector<FeatureFunction*> &producers = FeatureFunction::GetFeatureFunctions();
|
|
for(size_t i=0; i<producers.size(); ++i) {
|
|
FeatureFunction &ff = *producers[i];
|
|
if (! IsFeatureFunctionIgnored(ff)) {
|
|
Timer iTime;
|
|
iTime.start();
|
|
ff.InitializeForInput(source);
|
|
VERBOSE(3,"InitializeForInput( " << ff.GetScoreProducerDescription() << " ) = " << iTime << endl);
|
|
}
|
|
}
|
|
}
|
|
|
|
void StaticData::CleanUpAfterSentenceProcessing(const InputType& source) const
|
|
{
|
|
const std::vector<FeatureFunction*> &producers = FeatureFunction::GetFeatureFunctions();
|
|
for(size_t i=0; i<producers.size(); ++i) {
|
|
FeatureFunction &ff = *producers[i];
|
|
if (! IsFeatureFunctionIgnored(ff)) {
|
|
ff.CleanUpAfterSentenceProcessing(source);
|
|
}
|
|
}
|
|
}
|
|
|
|
void StaticData::LoadFeatureFunctions()
|
|
{
|
|
const std::vector<FeatureFunction*> &ffs
|
|
= FeatureFunction::GetFeatureFunctions();
|
|
std::vector<FeatureFunction*>::const_iterator iter;
|
|
for (iter = ffs.begin(); iter != ffs.end(); ++iter) {
|
|
FeatureFunction *ff = *iter;
|
|
bool doLoad = true;
|
|
|
|
// if (PhraseDictionary *ffCast = dynamic_cast<PhraseDictionary*>(ff)) {
|
|
if (dynamic_cast<PhraseDictionary*>(ff)) {
|
|
doLoad = false;
|
|
}
|
|
|
|
if (doLoad) {
|
|
VERBOSE(1, "Loading " << ff->GetScoreProducerDescription() << endl);
|
|
ff->Load();
|
|
}
|
|
}
|
|
|
|
const std::vector<PhraseDictionary*> &pts = PhraseDictionary::GetColl();
|
|
for (size_t i = 0; i < pts.size(); ++i) {
|
|
PhraseDictionary *pt = pts[i];
|
|
VERBOSE(1, "Loading " << pt->GetScoreProducerDescription() << endl);
|
|
pt->Load();
|
|
}
|
|
|
|
CheckLEGACYPT();
|
|
}
|
|
|
|
bool StaticData::CheckWeights() const
|
|
{
|
|
set<string> weightNames = m_parameter->GetWeightNames();
|
|
set<string> featureNames;
|
|
|
|
const std::vector<FeatureFunction*> &ffs = FeatureFunction::GetFeatureFunctions();
|
|
for (size_t i = 0; i < ffs.size(); ++i) {
|
|
const FeatureFunction &ff = *ffs[i];
|
|
const string &descr = ff.GetScoreProducerDescription();
|
|
featureNames.insert(descr);
|
|
|
|
set<string>::iterator iter = weightNames.find(descr);
|
|
if (iter == weightNames.end()) {
|
|
cerr << "Can't find weights for feature function " << descr << endl;
|
|
} else {
|
|
weightNames.erase(iter);
|
|
}
|
|
}
|
|
|
|
//sparse features
|
|
if (!weightNames.empty()) {
|
|
set<string>::iterator iter;
|
|
for (iter = weightNames.begin(); iter != weightNames.end(); ) {
|
|
string fname = (*iter).substr(0, (*iter).find("_"));
|
|
VERBOSE(1,fname << "\n");
|
|
if (featureNames.find(fname) != featureNames.end()) {
|
|
weightNames.erase(iter++);
|
|
}
|
|
else {
|
|
++iter;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!weightNames.empty()) {
|
|
cerr << "The following weights have no feature function. Maybe incorrectly spelt weights: ";
|
|
set<string>::iterator iter;
|
|
for (iter = weightNames.begin(); iter != weightNames.end(); ++iter) {
|
|
cerr << *iter << ",";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void StaticData::LoadSparseWeightsFromConfig() {
|
|
set<string> featureNames;
|
|
const std::vector<FeatureFunction*> &ffs = FeatureFunction::GetFeatureFunctions();
|
|
for (size_t i = 0; i < ffs.size(); ++i) {
|
|
const FeatureFunction &ff = *ffs[i];
|
|
const string &descr = ff.GetScoreProducerDescription();
|
|
featureNames.insert(descr);
|
|
}
|
|
|
|
std::map<std::string, std::vector<float> > weights = m_parameter->GetAllWeights();
|
|
std::map<std::string, std::vector<float> >::iterator iter;
|
|
for (iter = weights.begin(); iter != weights.end(); ++iter) {
|
|
// this indicates that it is sparse feature
|
|
if (featureNames.find(iter->first) == featureNames.end()) {
|
|
UTIL_THROW_IF2(iter->second.size() != 1, "ERROR: only one weight per sparse feature allowed: " << iter->first);
|
|
m_allWeights.Assign(iter->first, iter->second[0]);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/**! Read in settings for alternative weights */
|
|
bool StaticData::LoadAlternateWeightSettings()
|
|
{
|
|
if (m_threadCount > 1) {
|
|
cerr << "ERROR: alternative weight settings currently not supported with multi-threading.";
|
|
return false;
|
|
}
|
|
|
|
vector<string> weightSpecification;
|
|
const PARAM_VEC *params = m_parameter->GetParam2("alternate-weight-setting");
|
|
if (params && params->size()) {
|
|
weightSpecification = *params;
|
|
}
|
|
|
|
// get mapping from feature names to feature functions
|
|
map<string,FeatureFunction*> nameToFF;
|
|
const std::vector<FeatureFunction*> &ffs = FeatureFunction::GetFeatureFunctions();
|
|
for (size_t i = 0; i < ffs.size(); ++i) {
|
|
nameToFF[ ffs[i]->GetScoreProducerDescription() ] = ffs[i];
|
|
}
|
|
|
|
// copy main weight setting as default
|
|
m_weightSetting["default"] = new ScoreComponentCollection( m_allWeights );
|
|
|
|
// go through specification in config file
|
|
string currentId = "";
|
|
bool hasErrors = false;
|
|
for (size_t i=0; i<weightSpecification.size(); ++i) {
|
|
|
|
// identifier line (with optional additional specifications)
|
|
if (weightSpecification[i].find("id=") == 0) {
|
|
vector<string> tokens = Tokenize(weightSpecification[i]);
|
|
vector<string> args = Tokenize(tokens[0], "=");
|
|
currentId = args[1];
|
|
VERBOSE(1,"alternate weight setting " << currentId << endl);
|
|
UTIL_THROW_IF2(m_weightSetting.find(currentId) != m_weightSetting.end(),
|
|
"Duplicate alternate weight id: " << currentId);
|
|
m_weightSetting[ currentId ] = new ScoreComponentCollection;
|
|
|
|
// other specifications
|
|
for(size_t j=1; j<tokens.size(); j++) {
|
|
vector<string> args = Tokenize(tokens[j], "=");
|
|
// sparse weights
|
|
if (args[0] == "weight-file") {
|
|
if (args.size() != 2) {
|
|
UserMessage::Add("One argument should be supplied for weight-file");
|
|
return false;
|
|
}
|
|
ScoreComponentCollection extraWeights;
|
|
if (!extraWeights.Load(args[1])) {
|
|
UserMessage::Add("Unable to load weights from " + args[1]);
|
|
return false;
|
|
}
|
|
m_weightSetting[ currentId ]->PlusEquals(extraWeights);
|
|
}
|
|
// ignore feature functions
|
|
else if (args[0] == "ignore-ff") {
|
|
set< string > *ffNameSet = new set< string >;
|
|
m_weightSettingIgnoreFF[ currentId ] = *ffNameSet;
|
|
vector<string> featureFunctionName = Tokenize(args[1], ",");
|
|
for(size_t k=0; k<featureFunctionName.size(); k++) {
|
|
// check if a valid nane
|
|
map<string,FeatureFunction*>::iterator ffLookUp
|
|
= nameToFF.find(featureFunctionName[k]);
|
|
if (ffLookUp == nameToFF.end()) {
|
|
cerr << "ERROR: alternate weight setting " << currentId
|
|
<< " specifies to ignore feature function " << featureFunctionName[k]
|
|
<< " but there is no such feature function" << endl;
|
|
hasErrors = true;
|
|
} else {
|
|
m_weightSettingIgnoreFF[ currentId ].insert( featureFunctionName[k] );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// weight lines
|
|
else {
|
|
UTIL_THROW_IF2(currentId.empty(), "No alternative weights specified");
|
|
vector<string> tokens = Tokenize(weightSpecification[i]);
|
|
UTIL_THROW_IF2(tokens.size() < 2
|
|
, "Incorrect format for alternate weights: " << weightSpecification[i]);
|
|
|
|
// get name and weight values
|
|
string name = tokens[0];
|
|
name = name.substr(0, name.size() - 1); // remove trailing "="
|
|
vector<float> weights(tokens.size() - 1);
|
|
for (size_t i = 1; i < tokens.size(); ++i) {
|
|
float weight = Scan<float>(tokens[i]);
|
|
weights[i - 1] = weight;
|
|
}
|
|
|
|
// check if a valid nane
|
|
map<string,FeatureFunction*>::iterator ffLookUp = nameToFF.find(name);
|
|
if (ffLookUp == nameToFF.end()) {
|
|
cerr << "ERROR: alternate weight setting " << currentId
|
|
<< " specifies weight(s) for " << name
|
|
<< " but there is no such feature function" << endl;
|
|
hasErrors = true;
|
|
} else {
|
|
m_weightSetting[ currentId ]->Assign( nameToFF[name], weights);
|
|
}
|
|
}
|
|
}
|
|
UTIL_THROW_IF2(hasErrors, "Errors loading alternate weights");
|
|
return true;
|
|
}
|
|
|
|
void StaticData::NoCache()
|
|
{
|
|
bool noCache;
|
|
SetBooleanParameter(noCache, "no-cache", false );
|
|
|
|
if (noCache) {
|
|
const std::vector<PhraseDictionary*> &pts = PhraseDictionary::GetColl();
|
|
for (size_t i = 0; i < pts.size(); ++i) {
|
|
PhraseDictionary &pt = *pts[i];
|
|
pt.SetParameter("cache-size", "0");
|
|
}
|
|
}
|
|
}
|
|
|
|
std::map<std::string, std::string> StaticData::OverrideFeatureNames()
|
|
{
|
|
std::map<std::string, std::string> ret;
|
|
|
|
const PARAM_VEC *params = m_parameter->GetParam2("feature-name-overwrite");
|
|
if (params && params->size()) {
|
|
UTIL_THROW_IF2(params->size() != 1, "Only provide 1 line in the section [feature-name-overwrite]");
|
|
vector<string> toks = Tokenize(params->at(0));
|
|
UTIL_THROW_IF2(toks.size() % 2 != 0, "Format of -feature-name-overwrite must be [old-name new-name]*");
|
|
|
|
for (size_t i = 0; i < toks.size(); i += 2) {
|
|
const string &oldName = toks[i];
|
|
const string &newName = toks[i+1];
|
|
ret[oldName] = newName;
|
|
}
|
|
}
|
|
|
|
if (m_useS2TDecoder) {
|
|
// Automatically override PhraseDictionary{Memory,Scope3}. This will
|
|
// have to change if the FF parameters diverge too much in the future,
|
|
// but for now it makes switching between the old and new decoders much
|
|
// more convenient.
|
|
ret["PhraseDictionaryMemory"] = "RuleTable";
|
|
ret["PhraseDictionaryScope3"] = "RuleTable";
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void StaticData::OverrideFeatures()
|
|
{
|
|
const PARAM_VEC *params = m_parameter->GetParam2("feature-overwrite");
|
|
for (size_t i = 0; params && i < params->size(); ++i) {
|
|
const string &str = params->at(i);
|
|
vector<string> toks = Tokenize(str);
|
|
UTIL_THROW_IF2(toks.size() <= 1, "Incorrect format for feature override: " << str);
|
|
|
|
FeatureFunction &ff = FeatureFunction::FindFeatureFunction(toks[0]);
|
|
|
|
for (size_t j = 1; j < toks.size(); ++j) {
|
|
const string &keyValStr = toks[j];
|
|
vector<string> keyVal = Tokenize(keyValStr, "=");
|
|
UTIL_THROW_IF2(keyVal.size() != 2, "Incorrect format for parameter override: " << keyValStr);
|
|
|
|
VERBOSE(1, "Override " << ff.GetScoreProducerDescription() << " "
|
|
<< keyVal[0] << "=" << keyVal[1] << endl);
|
|
|
|
ff.SetParameter(keyVal[0], keyVal[1]);
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void StaticData::CheckLEGACYPT()
|
|
{
|
|
const std::vector<PhraseDictionary*> &pts = PhraseDictionary::GetColl();
|
|
for (size_t i = 0; i < pts.size(); ++i) {
|
|
const PhraseDictionary *phraseDictionary = pts[i];
|
|
if (dynamic_cast<const PhraseDictionaryTreeAdaptor*>(phraseDictionary) != NULL) {
|
|
m_useLegacyPT = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
m_useLegacyPT = false;
|
|
}
|
|
|
|
|
|
void StaticData::ResetWeights(const std::string &denseWeights, const std::string &sparseFile)
|
|
{
|
|
m_allWeights = ScoreComponentCollection();
|
|
|
|
// dense weights
|
|
string name("");
|
|
vector<float> weights;
|
|
vector<string> toks = Tokenize(denseWeights);
|
|
for (size_t i = 0; i < toks.size(); ++i) {
|
|
const string &tok = toks[i];
|
|
|
|
if (tok.substr(tok.size() - 1, 1) == "=") {
|
|
// start of new feature
|
|
|
|
if (name != "") {
|
|
// save previous ff
|
|
const FeatureFunction &ff = FeatureFunction::FindFeatureFunction(name);
|
|
m_allWeights.Assign(&ff, weights);
|
|
weights.clear();
|
|
}
|
|
|
|
name = tok.substr(0, tok.size() - 1);
|
|
} else {
|
|
// a weight for curr ff
|
|
float weight = Scan<float>(toks[i]);
|
|
weights.push_back(weight);
|
|
}
|
|
}
|
|
|
|
const FeatureFunction &ff = FeatureFunction::FindFeatureFunction(name);
|
|
m_allWeights.Assign(&ff, weights);
|
|
|
|
// sparse weights
|
|
InputFileStream sparseStrme(sparseFile);
|
|
string line;
|
|
while (getline(sparseStrme, line)) {
|
|
vector<string> toks = Tokenize(line);
|
|
UTIL_THROW_IF2(toks.size() != 2, "Incorrect sparse weight format. Should be FFName_spareseName weight");
|
|
|
|
vector<string> names = Tokenize(toks[0], "_");
|
|
UTIL_THROW_IF2(names.size() != 2, "Incorrect sparse weight name. Should be FFName_spareseName");
|
|
|
|
const FeatureFunction &ff = FeatureFunction::FindFeatureFunction(names[0]);
|
|
m_allWeights.Assign(&ff, names[1], Scan<float>(toks[1]));
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|