mosesdecoder/moses/LatticeMBR.cpp
2014-10-09 12:52:06 +01:00

669 lines
25 KiB
C++

/*
* LatticeMBR.cpp
* moses-cmd
*
* Created by Abhishek Arun on 26/01/2010.
* Copyright 2010 __MyCompanyName__. All rights reserved.
*
*/
#include "LatticeMBR.h"
#include "moses/StaticData.h"
#include <algorithm>
#include <set>
using namespace std;
namespace Moses
{
size_t bleu_order = 4;
float UNKNGRAMLOGPROB = -20;
void GetOutputWords(const TrellisPath &path, vector <Word> &translation)
{
const std::vector<const Hypothesis *> &edges = path.GetEdges();
// print the surface factor of the translation
for (int currEdge = (int)edges.size() - 1 ; currEdge >= 0 ; currEdge--) {
const Hypothesis &edge = *edges[currEdge];
const Phrase &phrase = edge.GetCurrTargetPhrase();
size_t size = phrase.GetSize();
for (size_t pos = 0 ; pos < size ; pos++) {
translation.push_back(phrase.GetWord(pos));
}
}
}
void extract_ngrams(const vector<Word >& sentence, map < Phrase, int > & allngrams)
{
for (int k = 0; k < (int)bleu_order; k++) {
for(int i =0; i < max((int)sentence.size()-k,0); i++) {
Phrase ngram( k+1);
for ( int j = i; j<= i+k; j++) {
ngram.AddWord(sentence[j]);
}
++allngrams[ngram];
}
}
}
void NgramScores::addScore(const Hypothesis* node, const Phrase& ngram, float score)
{
set<Phrase>::const_iterator ngramIter = m_ngrams.find(ngram);
if (ngramIter == m_ngrams.end()) {
ngramIter = m_ngrams.insert(ngram).first;
}
map<const Phrase*,float>& ngramScores = m_scores[node];
map<const Phrase*,float>::iterator scoreIter = ngramScores.find(&(*ngramIter));
if (scoreIter == ngramScores.end()) {
ngramScores[&(*ngramIter)] = score;
} else {
ngramScores[&(*ngramIter)] = log_sum(score,scoreIter->second);
}
}
NgramScores::NodeScoreIterator NgramScores::nodeBegin(const Hypothesis* node)
{
return m_scores[node].begin();
}
NgramScores::NodeScoreIterator NgramScores::nodeEnd(const Hypothesis* node)
{
return m_scores[node].end();
}
LatticeMBRSolution::LatticeMBRSolution(const TrellisPath& path, bool isMap) :
m_score(0.0f)
{
const std::vector<const Hypothesis *> &edges = path.GetEdges();
for (int currEdge = (int)edges.size() - 1 ; currEdge >= 0 ; currEdge--) {
const Hypothesis &edge = *edges[currEdge];
const Phrase &phrase = edge.GetCurrTargetPhrase();
size_t size = phrase.GetSize();
for (size_t pos = 0 ; pos < size ; pos++) {
m_words.push_back(phrase.GetWord(pos));
}
}
if (isMap) {
m_mapScore = path.GetTotalScore();
} else {
m_mapScore = 0;
}
}
void LatticeMBRSolution::CalcScore(map<Phrase, float>& finalNgramScores, const vector<float>& thetas, float mapWeight)
{
m_ngramScores.assign(thetas.size()-1, -10000);
map < Phrase, int > counts;
extract_ngrams(m_words,counts);
//Now score this translation
m_score = thetas[0] * m_words.size();
//Calculate the ngramScores, working in log space at first
for (map < Phrase, int >::iterator ngrams = counts.begin(); ngrams != counts.end(); ++ngrams) {
float ngramPosterior = UNKNGRAMLOGPROB;
map<Phrase,float>::const_iterator ngramPosteriorIt = finalNgramScores.find(ngrams->first);
if (ngramPosteriorIt != finalNgramScores.end()) {
ngramPosterior = ngramPosteriorIt->second;
}
size_t ngramSize = ngrams->first.GetSize();
m_ngramScores[ngramSize-1] = log_sum(log((float)ngrams->second) + ngramPosterior,m_ngramScores[ngramSize-1]);
}
//convert from log to probability and create weighted sum
for (size_t i = 0; i < m_ngramScores.size(); ++i) {
m_ngramScores[i] = exp(m_ngramScores[i]);
m_score += thetas[i+1] * m_ngramScores[i];
}
//The map score
m_score += m_mapScore*mapWeight;
}
void pruneLatticeFB(Lattice & connectedHyp, map < const Hypothesis*, set <const Hypothesis* > > & outgoingHyps, map<const Hypothesis*, vector<Edge> >& incomingEdges,
const vector< float> & estimatedScores, const Hypothesis* bestHypo, size_t edgeDensity, float scale)
{
//Need hyp 0 in connectedHyp - Find empty hypothesis
VERBOSE(2,"Pruning lattice to edge density " << edgeDensity << endl);
const Hypothesis* emptyHyp = connectedHyp.at(0);
while (emptyHyp->GetId() != 0) {
emptyHyp = emptyHyp->GetPrevHypo();
}
connectedHyp.push_back(emptyHyp); //Add it to list of hyps
//Need hyp 0's outgoing Hyps
for (size_t i = 0; i < connectedHyp.size(); ++i) {
if (connectedHyp[i]->GetId() > 0 && connectedHyp[i]->GetPrevHypo()->GetId() == 0)
outgoingHyps[emptyHyp].insert(connectedHyp[i]);
}
//sort hyps based on estimated scores - do so by copying to multimap
multimap<float, const Hypothesis*> sortHypsByVal;
for (size_t i =0; i < estimatedScores.size(); ++i) {
sortHypsByVal.insert(make_pair(estimatedScores[i], connectedHyp[i]));
}
multimap<float, const Hypothesis*>::const_iterator it = --sortHypsByVal.end();
float bestScore = it->first;
//store best score as score of hyp 0
sortHypsByVal.insert(make_pair(bestScore, emptyHyp));
IFVERBOSE(3) {
for (multimap<float, const Hypothesis*>::const_iterator it = --sortHypsByVal.end(); it != --sortHypsByVal.begin(); --it) {
const Hypothesis* currHyp = it->second;
cerr << "Hyp " << currHyp->GetId() << ", estimated score: " << it->first << endl;
}
}
set <const Hypothesis*> survivingHyps; //store hyps that make the cut in this
VERBOSE(2, "BEST HYPO TARGET LENGTH : " << bestHypo->GetSize() << endl)
size_t numEdgesTotal = edgeDensity * bestHypo->GetSize(); //as per Shankar, aim for (density * target length of MAP solution) arcs
size_t numEdgesCreated = 0;
VERBOSE(2, "Target edge count: " << numEdgesTotal << endl);
float prevScore = -999999;
//now iterate over multimap
for (multimap<float, const Hypothesis*>::const_iterator it = --sortHypsByVal.end(); it != --sortHypsByVal.begin(); --it) {
float currEstimatedScore = it->first;
const Hypothesis* currHyp = it->second;
if (numEdgesCreated >= numEdgesTotal && prevScore > currEstimatedScore) //if this hyp has equal estimated score to previous, include its edges too
break;
prevScore = currEstimatedScore;
VERBOSE(3, "Num edges created : "<< numEdgesCreated << ", numEdges wanted " << numEdgesTotal << endl)
VERBOSE(3, "Considering hyp " << currHyp->GetId() << ", estimated score: " << it->first << endl)
survivingHyps.insert(currHyp); //CurrHyp made the cut
// is its best predecessor already included ?
if (survivingHyps.find(currHyp->GetPrevHypo()) != survivingHyps.end()) { //yes, then add an edge
vector <Edge>& edges = incomingEdges[currHyp];
Edge winningEdge(currHyp->GetPrevHypo(),currHyp,scale*(currHyp->GetScore() - currHyp->GetPrevHypo()->GetScore()),currHyp->GetCurrTargetPhrase());
edges.push_back(winningEdge);
++numEdgesCreated;
}
//let's try the arcs too
const ArcList *arcList = currHyp->GetArcList();
if (arcList != NULL) {
ArcList::const_iterator iterArcList;
for (iterArcList = arcList->begin() ; iterArcList != arcList->end() ; ++iterArcList) {
const Hypothesis *loserHypo = *iterArcList;
const Hypothesis* loserPrevHypo = loserHypo->GetPrevHypo();
if (survivingHyps.find(loserPrevHypo) != survivingHyps.end()) { //found it, add edge
double arcScore = loserHypo->GetScore() - loserPrevHypo->GetScore();
Edge losingEdge(loserPrevHypo, currHyp, arcScore*scale, loserHypo->GetCurrTargetPhrase());
vector <Edge>& edges = incomingEdges[currHyp];
edges.push_back(losingEdge);
++numEdgesCreated;
}
}
}
//Now if a successor node has already been visited, add an edge connecting the two
map < const Hypothesis*, set < const Hypothesis* > >::const_iterator outgoingIt = outgoingHyps.find(currHyp);
if (outgoingIt != outgoingHyps.end()) {//currHyp does have successors
const set<const Hypothesis*> & outHyps = outgoingIt->second; //the successors
for (set<const Hypothesis*>::const_iterator outHypIts = outHyps.begin(); outHypIts != outHyps.end(); ++outHypIts) {
const Hypothesis* succHyp = *outHypIts;
if (survivingHyps.find(succHyp) == survivingHyps.end()) //Have we encountered the successor yet?
continue; //No, move on to next
//Curr Hyp can be : a) the best predecessor of succ b) or an arc attached to succ
if (succHyp->GetPrevHypo() == currHyp) { //best predecessor
vector <Edge>& succEdges = incomingEdges[succHyp];
Edge succWinningEdge(currHyp, succHyp, scale*(succHyp->GetScore() - currHyp->GetScore()), succHyp->GetCurrTargetPhrase());
succEdges.push_back(succWinningEdge);
survivingHyps.insert(succHyp);
++numEdgesCreated;
}
//now, let's find an arc
const ArcList *arcList = succHyp->GetArcList();
if (arcList != NULL) {
ArcList::const_iterator iterArcList;
//QUESTION: What happens if there's more than one loserPrevHypo?
for (iterArcList = arcList->begin() ; iterArcList != arcList->end() ; ++iterArcList) {
const Hypothesis *loserHypo = *iterArcList;
const Hypothesis* loserPrevHypo = loserHypo->GetPrevHypo();
if (loserPrevHypo == currHyp) { //found it
vector <Edge>& succEdges = incomingEdges[succHyp];
double arcScore = loserHypo->GetScore() - currHyp->GetScore();
Edge losingEdge(currHyp, succHyp,scale* arcScore, loserHypo->GetCurrTargetPhrase());
succEdges.push_back(losingEdge);
++numEdgesCreated;
}
}
}
}
}
}
connectedHyp.clear();
for (set <const Hypothesis*>::iterator it = survivingHyps.begin(); it != survivingHyps.end(); ++it) {
connectedHyp.push_back(*it);
}
VERBOSE(2, "Done! Num edges created : "<< numEdgesCreated << ", numEdges wanted " << numEdgesTotal << endl)
IFVERBOSE(3) {
cerr << "Surviving hyps: " ;
for (set <const Hypothesis*>::iterator it = survivingHyps.begin(); it != survivingHyps.end(); ++it) {
cerr << (*it)->GetId() << " ";
}
cerr << endl;
}
}
void calcNgramExpectations(Lattice & connectedHyp, map<const Hypothesis*, vector<Edge> >& incomingEdges,
map<Phrase, float>& finalNgramScores, bool posteriors)
{
sort(connectedHyp.begin(),connectedHyp.end(),ascendingCoverageCmp); //sort by increasing source word cov
/*cerr << "Lattice:" << endl;
for (Lattice::const_iterator i = connectedHyp.begin(); i != connectedHyp.end(); ++i) {
const Hypothesis* h = *i;
cerr << *h << endl;
const vector<Edge>& edges = incomingEdges[h];
for (size_t e = 0; e < edges.size(); ++e) {
cerr << edges[e];
}
}*/
map<const Hypothesis*, float> forwardScore;
forwardScore[connectedHyp[0]] = 0.0f; //forward score of hyp 0 is 1 (or 0 in logprob space)
set< const Hypothesis *> finalHyps; //store completed hyps
NgramScores ngramScores;//ngram scores for each hyp
for (size_t i = 1; i < connectedHyp.size(); ++i) {
const Hypothesis* currHyp = connectedHyp[i];
if (currHyp->GetWordsBitmap().IsComplete()) {
finalHyps.insert(currHyp);
}
VERBOSE(3, "Processing hyp: " << currHyp->GetId() << ", num words cov= " << currHyp->GetWordsBitmap().GetNumWordsCovered() << endl)
vector <Edge> & edges = incomingEdges[currHyp];
for (size_t e = 0; e < edges.size(); ++e) {
const Edge& edge = edges[e];
if (forwardScore.find(currHyp) == forwardScore.end()) {
forwardScore[currHyp] = forwardScore[edge.GetTailNode()] + edge.GetScore();
VERBOSE(3, "Fwd score["<<currHyp->GetId()<<"] = fwdScore["<<edge.GetTailNode()->GetId() << "] + edge Score: " << edge.GetScore() << endl)
} else {
forwardScore[currHyp] = log_sum(forwardScore[currHyp], forwardScore[edge.GetTailNode()] + edge.GetScore());
VERBOSE(3, "Fwd score["<<currHyp->GetId()<<"] += fwdScore["<<edge.GetTailNode()->GetId() << "] + edge Score: " << edge.GetScore() << endl)
}
}
//Process ngrams now
for (size_t j =0 ; j < edges.size(); ++j) {
Edge& edge = edges[j];
const NgramHistory & incomingPhrases = edge.GetNgrams(incomingEdges);
//let's first score ngrams introduced by this edge
for (NgramHistory::const_iterator it = incomingPhrases.begin(); it != incomingPhrases.end(); ++it) {
const Phrase& ngram = it->first;
const PathCounts& pathCounts = it->second;
VERBOSE(4, "Calculating score for: " << it->first << endl)
for (PathCounts::const_iterator pathCountIt = pathCounts.begin(); pathCountIt != pathCounts.end(); ++pathCountIt) {
//Score of an n-gram is forward score of head node of leftmost edge + all edge scores
const Path& path = pathCountIt->first;
//cerr << "path count for " << ngram << " is " << pathCountIt->second << endl;
float score = forwardScore[path[0]->GetTailNode()];
for (size_t i = 0; i < path.size(); ++i) {
score += path[i]->GetScore();
}
//if we're doing expectations, then the number of times the ngram
//appears on the path is relevant.
size_t count = posteriors ? 1 : pathCountIt->second;
for (size_t k = 0; k < count; ++k) {
ngramScores.addScore(currHyp,ngram,score);
}
}
}
//Now score ngrams that are just being propagated from the history
for (NgramScores::NodeScoreIterator it = ngramScores.nodeBegin(edge.GetTailNode());
it != ngramScores.nodeEnd(edge.GetTailNode()); ++it) {
const Phrase & currNgram = *(it->first);
float currNgramScore = it->second;
VERBOSE(4, "Calculating score for: " << currNgram << endl)
// For posteriors, don't double count ngrams
if (!posteriors || incomingPhrases.find(currNgram) == incomingPhrases.end()) {
float score = edge.GetScore() + currNgramScore;
ngramScores.addScore(currHyp,currNgram,score);
}
}
}
}
float Z = 9999999; //the total score of the lattice
//Done - Print out ngram posteriors for final hyps
for (set< const Hypothesis *>::iterator finalHyp = finalHyps.begin(); finalHyp != finalHyps.end(); ++finalHyp) {
const Hypothesis* hyp = *finalHyp;
for (NgramScores::NodeScoreIterator it = ngramScores.nodeBegin(hyp); it != ngramScores.nodeEnd(hyp); ++it) {
const Phrase& ngram = *(it->first);
if (finalNgramScores.find(ngram) == finalNgramScores.end()) {
finalNgramScores[ngram] = it->second;
} else {
finalNgramScores[ngram] = log_sum(it->second, finalNgramScores[ngram]);
}
}
if (Z == 9999999) {
Z = forwardScore[hyp];
} else {
Z = log_sum(Z, forwardScore[hyp]);
}
}
//Z *= scale; //scale the score
for (map<Phrase, float>::iterator finalScoresIt = finalNgramScores.begin(); finalScoresIt != finalNgramScores.end(); ++finalScoresIt) {
finalScoresIt->second = finalScoresIt->second - Z;
IFVERBOSE(2) {
VERBOSE(2,finalScoresIt->first << " [" << finalScoresIt->second << "]" << endl);
}
}
}
const NgramHistory& Edge::GetNgrams(map<const Hypothesis*, vector<Edge> > & incomingEdges)
{
if (m_ngrams.size() > 0)
return m_ngrams;
const Phrase& currPhrase = GetWords();
//Extract the n-grams local to this edge
for (size_t start = 0; start < currPhrase.GetSize(); ++start) {
for (size_t end = start; end < start + bleu_order; ++end) {
if (end < currPhrase.GetSize()) {
Phrase edgeNgram(end-start+1);
for (size_t index = start; index <= end; ++index) {
edgeNgram.AddWord(currPhrase.GetWord(index));
}
//cout << "Inserting Phrase : " << edgeNgram << endl;
vector<const Edge*> edgeHistory;
edgeHistory.push_back(this);
storeNgramHistory(edgeNgram, edgeHistory);
} else {
break;
}
}
}
map<const Hypothesis*, vector<Edge> >::iterator it = incomingEdges.find(m_tailNode);
if (it != incomingEdges.end()) { //node has incoming edges
vector<Edge> & inEdges = it->second;
for (vector<Edge>::iterator edge = inEdges.begin(); edge != inEdges.end(); ++edge) {//add the ngrams straddling prev and curr edge
const NgramHistory & edgeIncomingNgrams = edge->GetNgrams(incomingEdges);
for (NgramHistory::const_iterator edgeInNgramHist = edgeIncomingNgrams.begin(); edgeInNgramHist != edgeIncomingNgrams.end(); ++edgeInNgramHist) {
const Phrase& edgeIncomingNgram = edgeInNgramHist->first;
const PathCounts & edgeIncomingNgramPaths = edgeInNgramHist->second;
size_t back = min(edgeIncomingNgram.GetSize(), edge->GetWordsSize());
const Phrase& edgeWords = edge->GetWords();
IFVERBOSE(3) {
cerr << "Edge: "<< *edge <<endl;
cerr << "edgeWords: " << edgeWords << endl;
cerr << "edgeInNgram: " << edgeIncomingNgram << endl;
}
Phrase edgeSuffix(ARRAY_SIZE_INCR);
Phrase ngramSuffix(ARRAY_SIZE_INCR);
GetPhraseSuffix(edgeWords,back,edgeSuffix);
GetPhraseSuffix(edgeIncomingNgram,back,ngramSuffix);
if (ngramSuffix == edgeSuffix) { //we've got the suffix of previous edge
size_t edgeInNgramSize = edgeIncomingNgram.GetSize();
for (size_t i = 0; i < GetWordsSize() && i + edgeInNgramSize < bleu_order ; ++i) {
Phrase newNgram(edgeIncomingNgram);
for (size_t j = 0; j <= i ; ++j) {
newNgram.AddWord(GetWords().GetWord(j));
}
VERBOSE(3, "Inserting New Phrase : " << newNgram << endl)
for (PathCounts::const_iterator pathIt = edgeIncomingNgramPaths.begin(); pathIt != edgeIncomingNgramPaths.end(); ++pathIt) {
Path newNgramPath = pathIt->first;
newNgramPath.push_back(this);
storeNgramHistory(newNgram, newNgramPath, pathIt->second);
}
}
}
}
}
}
return m_ngrams;
}
//Add the last lastN words of origPhrase to targetPhrase
void Edge::GetPhraseSuffix(const Phrase& origPhrase, size_t lastN, Phrase& targetPhrase) const
{
size_t origSize = origPhrase.GetSize();
size_t startIndex = origSize - lastN;
for (size_t index = startIndex; index < origPhrase.GetSize(); ++index) {
targetPhrase.AddWord(origPhrase.GetWord(index));
}
}
bool Edge::operator< (const Edge& compare ) const
{
if (m_headNode->GetId() < compare.m_headNode->GetId())
return true;
if (compare.m_headNode->GetId() < m_headNode->GetId())
return false;
if (m_tailNode->GetId() < compare.m_tailNode->GetId())
return true;
if (compare.m_tailNode->GetId() < m_tailNode->GetId())
return false;
return GetScore() < compare.GetScore();
}
ostream& operator<< (ostream& out, const Edge& edge)
{
out << "Head: " << edge.m_headNode->GetId() << ", Tail: " << edge.m_tailNode->GetId() << ", Score: " << edge.m_score << ", Phrase: " << edge.m_targetPhrase << endl;
return out;
}
bool ascendingCoverageCmp(const Hypothesis* a, const Hypothesis* b)
{
return a->GetWordsBitmap().GetNumWordsCovered() < b->GetWordsBitmap().GetNumWordsCovered();
}
void getLatticeMBRNBest(Manager& manager, TrellisPathList& nBestList,
vector<LatticeMBRSolution>& solutions, size_t n)
{
const StaticData& staticData = StaticData::Instance();
std::map < int, bool > connected;
std::vector< const Hypothesis *> connectedList;
map<Phrase, float> ngramPosteriors;
std::map < const Hypothesis*, set <const Hypothesis*> > outgoingHyps;
map<const Hypothesis*, vector<Edge> > incomingEdges;
vector< float> estimatedScores;
manager.GetForwardBackwardSearchGraph(&connected, &connectedList, &outgoingHyps, &estimatedScores);
pruneLatticeFB(connectedList, outgoingHyps, incomingEdges, estimatedScores, manager.GetBestHypothesis(), staticData.GetLatticeMBRPruningFactor(),staticData.GetMBRScale());
calcNgramExpectations(connectedList, incomingEdges, ngramPosteriors,true);
vector<float> mbrThetas = staticData.GetLatticeMBRThetas();
float p = staticData.GetLatticeMBRPrecision();
float r = staticData.GetLatticeMBRPRatio();
float mapWeight = staticData.GetLatticeMBRMapWeight();
if (mbrThetas.size() == 0) { //thetas not specified on the command line, use p and r instead
mbrThetas.push_back(-1); //Theta 0
mbrThetas.push_back(1/(bleu_order*p));
for (size_t i = 2; i <= bleu_order; ++i) {
mbrThetas.push_back(mbrThetas[i-1] / r);
}
}
IFVERBOSE(2) {
VERBOSE(2,"Thetas: ");
for (size_t i = 0; i < mbrThetas.size(); ++i) {
VERBOSE(2,mbrThetas[i] << " ");
}
VERBOSE(2,endl);
}
TrellisPathList::const_iterator iter;
size_t ctr = 0;
LatticeMBRSolutionComparator comparator;
for (iter = nBestList.begin() ; iter != nBestList.end() ; ++iter, ++ctr) {
const TrellisPath &path = **iter;
solutions.push_back(LatticeMBRSolution(path,iter==nBestList.begin()));
solutions.back().CalcScore(ngramPosteriors,mbrThetas,mapWeight);
sort(solutions.begin(), solutions.end(), comparator);
while (solutions.size() > n) {
solutions.pop_back();
}
}
VERBOSE(2,"LMBR Score: " << solutions[0].GetScore() << endl);
}
vector<Word> doLatticeMBR(Manager& manager, TrellisPathList& nBestList)
{
vector<LatticeMBRSolution> solutions;
getLatticeMBRNBest(manager, nBestList, solutions,1);
return solutions.at(0).GetWords();
}
const TrellisPath doConsensusDecoding(Manager& manager, TrellisPathList& nBestList)
{
static const int BLEU_ORDER = 4;
static const float SMOOTH = 1;
//calculate the ngram expectations
const StaticData& staticData = StaticData::Instance();
std::map < int, bool > connected;
std::vector< const Hypothesis *> connectedList;
map<Phrase, float> ngramExpectations;
std::map < const Hypothesis*, set <const Hypothesis*> > outgoingHyps;
map<const Hypothesis*, vector<Edge> > incomingEdges;
vector< float> estimatedScores;
manager.GetForwardBackwardSearchGraph(&connected, &connectedList, &outgoingHyps, &estimatedScores);
pruneLatticeFB(connectedList, outgoingHyps, incomingEdges, estimatedScores, manager.GetBestHypothesis(), staticData.GetLatticeMBRPruningFactor(),staticData.GetMBRScale());
calcNgramExpectations(connectedList, incomingEdges, ngramExpectations,false);
//expected length is sum of expected unigram counts
//cerr << "Thread " << pthread_self() << " Ngram expectations size: " << ngramExpectations.size() << endl;
float ref_length = 0.0f;
for (map<Phrase,float>::const_iterator ref_iter = ngramExpectations.begin();
ref_iter != ngramExpectations.end(); ++ref_iter) {
//cerr << "Ngram: " << ref_iter->first << " score: " <<
// ref_iter->second << endl;
if (ref_iter->first.GetSize() == 1) {
ref_length += exp(ref_iter->second);
// cerr << "Expected for " << ref_iter->first << " is " << exp(ref_iter->second) << endl;
}
}
VERBOSE(2,"REF Length: " << ref_length << endl);
//use the ngram expectations to rescore the nbest list.
TrellisPathList::const_iterator iter;
TrellisPathList::const_iterator best = nBestList.end();
float bestScore = -100000;
//cerr << "nbest list size: " << nBestList.GetSize() << endl;
for (iter = nBestList.begin() ; iter != nBestList.end() ; ++iter) {
const TrellisPath &path = **iter;
vector<Word> words;
map<Phrase,int> ngrams;
GetOutputWords(path,words);
/*for (size_t i = 0; i < words.size(); ++i) {
cerr << words[i].GetFactor(0)->GetString() << " ";
}
cerr << endl;
*/
extract_ngrams(words,ngrams);
vector<float> comps(2*BLEU_ORDER+1);
float logbleu = 0.0;
float brevity = 0.0;
int hyp_length = words.size();
for (int i = 0; i < BLEU_ORDER; ++i) {
comps[2*i] = 0.0;
comps[2*i+1] = max(hyp_length-i,0);
}
for (map<Phrase,int>::const_iterator hyp_iter = ngrams.begin();
hyp_iter != ngrams.end(); ++hyp_iter) {
map<Phrase,float>::const_iterator ref_iter = ngramExpectations.find(hyp_iter->first);
if (ref_iter != ngramExpectations.end()) {
comps[2*(hyp_iter->first.GetSize()-1)] += min(exp(ref_iter->second), (float)(hyp_iter->second));
}
}
comps[comps.size()-1] = ref_length;
/*for (size_t i = 0; i < comps.size(); ++i) {
cerr << comps[i] << " ";
}
cerr << endl;
*/
float score = 0.0f;
if (comps[0] != 0) {
for (int i=0; i<BLEU_ORDER; i++) {
if ( i > 0 ) {
logbleu += log((float)comps[2*i]+SMOOTH)-log((float)comps[2*i+1]+SMOOTH);
} else {
logbleu += log((float)comps[2*i])-log((float)comps[2*i+1]);
}
}
logbleu /= BLEU_ORDER;
brevity = 1.0-(float)comps[comps.size()-1]/comps[1]; // comps[comps_n-1] is the ref length, comps[1] is the test length
if (brevity < 0.0) {
logbleu += brevity;
}
score = exp(logbleu);
}
//cerr << "score: " << score << " bestScore: " << bestScore << endl;
if (score > bestScore) {
bestScore = score;
best = iter;
VERBOSE(2,"NEW BEST: " << score << endl);
//for (size_t i = 0; i < comps.size(); ++i) {
// cerr << comps[i] << " ";
//}
//cerr << endl;
}
}
assert (best != nBestList.end());
return **best;
//vector<Word> bestWords;
//GetOutputWords(**best,bestWords);
//return bestWords;
}
}