mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-05 02:22:21 +03:00
521 lines
16 KiB
C++
521 lines
16 KiB
C++
|
|
#include <cstring>
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <algorithm>
|
|
|
|
#include "_SuffixArraySearchApplicationBase.h"
|
|
|
|
#include <vector>
|
|
#include <iostream>
|
|
#include <set>
|
|
|
|
#ifdef WIN32
|
|
#include "WIN32_functions.h"
|
|
#else
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
typedef std::vector<TextLenType> SentIdSet;
|
|
typedef std::pair<SentIdSet, clock_t> ClockedSentIdSet;
|
|
typedef std::map<std::string, ClockedSentIdSet> PhraseSetMap;
|
|
|
|
#undef min
|
|
|
|
// constants
|
|
const size_t MINIMUM_SIZE_TO_KEEP = 10000; // increase this to improve memory usage,
|
|
// reduce for speed
|
|
const std::string SEPARATOR = " ||| ";
|
|
|
|
const double ALPHA_PLUS_EPS = -1000.0; // dummy value
|
|
const double ALPHA_MINUS_EPS = -2000.0; // dummy value
|
|
|
|
// configuration params
|
|
int pfe_filter_limit = 0; // 0 = don't filter anything based on P(f|e)
|
|
bool print_cooc_counts = false; // add cooc counts to phrase table?
|
|
bool print_neglog_significance = false; // add -log(p) to phrase table?
|
|
double sig_filter_limit = 0; // keep phrase pairs with -log(sig) > sig_filter_limit
|
|
// higher = filter-more
|
|
bool pef_filter_only = false; // only filter based on pef
|
|
bool hierarchical = false;
|
|
int max_cache = 0;
|
|
|
|
// globals
|
|
PhraseSetMap esets;
|
|
PhraseSetMap fsets;
|
|
double p_111 = 0.0; // alpha
|
|
size_t nremoved_sigfilter = 0;
|
|
size_t nremoved_pfefilter = 0;
|
|
|
|
C_SuffixArraySearchApplicationBase e_sa;
|
|
C_SuffixArraySearchApplicationBase f_sa;
|
|
int num_lines;
|
|
|
|
void usage()
|
|
{
|
|
std::cerr << "\nFilter phrase table using significance testing as described\n"
|
|
<< "in H. Johnson, et al. (2007) Improving Translation Quality\n"
|
|
<< "by Discarding Most of the Phrasetable. EMNLP 2007.\n"
|
|
<< "\nUsage:\n"
|
|
<< "\n filter-pt -e english.suf-arr -f french.suf-arr\n"
|
|
<< " [-c] [-p] [-l threshold] [-n num] < PHRASE-TABLE > FILTERED-PHRASE-TABLE\n\n"
|
|
<< " [-l threshold] >0.0, a+e, or a-e: keep values that have a -log significance > this\n"
|
|
<< " [-n num ] 0, 1...: 0=no filtering, >0 sort by P(e|f) and keep the top num elements\n"
|
|
<< " [-c ] add the cooccurence counts to the phrase table\n"
|
|
<< " [-p ] add -log(significance) to the phrasetable\n"
|
|
<< " [-h ] filter hierarchical rule table\n"
|
|
<< " [-m num ] limit cache to num most recent phrases\n";
|
|
exit(1);
|
|
}
|
|
|
|
struct PTEntry {
|
|
PTEntry(const std::string& str, int index);
|
|
std::string f_phrase;
|
|
std::string e_phrase;
|
|
std::string extra;
|
|
std::string scores;
|
|
float pfe;
|
|
int cf;
|
|
int ce;
|
|
int cfe;
|
|
float nlog_pte;
|
|
void set_cooc_stats(int _cef, int _cf, int _ce, float nlp) {
|
|
cfe = _cef;
|
|
cf = _cf;
|
|
ce = _ce;
|
|
nlog_pte = nlp;
|
|
}
|
|
|
|
};
|
|
|
|
PTEntry::PTEntry(const std::string& str, int index) :
|
|
cf(0), ce(0), cfe(0), nlog_pte(0.0)
|
|
{
|
|
size_t pos = 0;
|
|
std::string::size_type nextPos = str.find(SEPARATOR, pos);
|
|
this->f_phrase = str.substr(pos,nextPos);
|
|
|
|
pos = nextPos + SEPARATOR.size();
|
|
nextPos = str.find(SEPARATOR, pos);
|
|
this->e_phrase = str.substr(pos,nextPos-pos);
|
|
|
|
pos = nextPos + SEPARATOR.size();
|
|
nextPos = str.find(SEPARATOR, pos);
|
|
if (nextPos < str.size()) {
|
|
this->scores = str.substr(pos,nextPos-pos);
|
|
|
|
pos = nextPos + SEPARATOR.size();
|
|
this->extra = str.substr(pos);
|
|
}
|
|
else {
|
|
this->scores = str.substr(pos,str.size()-pos);
|
|
}
|
|
|
|
int c = 0;
|
|
std::string::iterator i=scores.begin();
|
|
if (index > 0) {
|
|
for (; i != scores.end(); ++i) {
|
|
if ((*i) == ' ') {
|
|
c++;
|
|
if (c == index) break;
|
|
}
|
|
}
|
|
}
|
|
if (i != scores.end()) {
|
|
++i;
|
|
}
|
|
char f[24];
|
|
char *fp=f;
|
|
while (i != scores.end() && *i != ' ') {
|
|
*fp++=*i++;
|
|
}
|
|
*fp++=0;
|
|
|
|
this->pfe = atof(f);
|
|
|
|
// std::cerr << "L: " << f_phrase << " ::: " << e_phrase << " ::: " << scores << " ::: " << pfe << std::endl;
|
|
// std::cerr << "X: " << extra << "\n";
|
|
}
|
|
|
|
struct PfeComparer {
|
|
bool operator()(const PTEntry* a, const PTEntry* b) const {
|
|
return a->pfe > b->pfe;
|
|
}
|
|
};
|
|
|
|
struct NlogSigThresholder {
|
|
NlogSigThresholder(float threshold) : t(threshold) {}
|
|
float t;
|
|
bool operator()(const PTEntry* a) const {
|
|
if (a->nlog_pte < t) {
|
|
delete a;
|
|
return true;
|
|
} else return false;
|
|
}
|
|
};
|
|
|
|
std::ostream& operator << (std::ostream& os, const PTEntry& pp)
|
|
{
|
|
os << pp.f_phrase << " ||| " << pp.e_phrase;
|
|
os << " ||| " << pp.scores;
|
|
if (pp.extra.size()>0) os << " ||| " << pp.extra;
|
|
if (print_cooc_counts) os << " ||| " << pp.cfe << " " << pp.cf << " " << pp.ce;
|
|
if (print_neglog_significance) os << " ||| " << pp.nlog_pte;
|
|
return os;
|
|
}
|
|
|
|
void print(int a, int b, int c, int d, float p)
|
|
{
|
|
std::cerr << a << "\t" << b << "\t P=" << p << "\n"
|
|
<< c << "\t" << d << "\t xf=" << (double)(b)*(double)(c)/(double)(a+1)/(double)(d+1) << "\n\n";
|
|
}
|
|
|
|
// 2x2 (one-sided) Fisher's exact test
|
|
// see B. Moore. (2004) On Log Likelihood and the Significance of Rare Events
|
|
double fisher_exact(int cfe, int ce, int cf)
|
|
{
|
|
assert(cfe <= ce);
|
|
assert(cfe <= cf);
|
|
|
|
int a = cfe;
|
|
int b = (cf - cfe);
|
|
int c = (ce - cfe);
|
|
int d = (num_lines - ce - cf + cfe);
|
|
int n = a + b + c + d;
|
|
|
|
double cp = exp(lgamma(1+a+c) + lgamma(1+b+d) + lgamma(1+a+b) + lgamma(1+c+d) - lgamma(1+n) - lgamma(1+a) - lgamma(1+b) - lgamma(1+c) - lgamma(1+d));
|
|
double total_p = 0.0;
|
|
int tc = std::min(b,c);
|
|
for (int i=0; i<=tc; i++) {
|
|
total_p += cp;
|
|
// double lg = lgamma(1+a+c) + lgamma(1+b+d) + lgamma(1+a+b) + lgamma(1+c+d) - lgamma(1+n) - lgamma(1+a) - lgamma(1+b) - lgamma(1+c) - lgamma(1+d); double cp = exp(lg);
|
|
// print(a,b,c,d,cp);
|
|
double coef = (double)(b)*(double)(c)/(double)(a+1)/(double)(d+1);
|
|
cp *= coef;
|
|
++a;
|
|
--c;
|
|
++d;
|
|
--b;
|
|
}
|
|
return total_p;
|
|
}
|
|
|
|
template <class setType>
|
|
setType ordered_set_intersect(setType & set_1, setType & set_2)
|
|
{
|
|
setType set_out;
|
|
std::set_intersection(set_1.begin(), set_1.end(), set_2.begin(), set_2.end(), inserter(set_out,set_out.begin()) );
|
|
return set_out;
|
|
}
|
|
|
|
|
|
SentIdSet lookup_phrase(const std::string & phrase, C_SuffixArraySearchApplicationBase & my_sa)
|
|
{
|
|
SentIdSet occur_set;
|
|
vector<S_SimplePhraseLocationElement> locations;
|
|
|
|
locations = my_sa.locateExactPhraseInCorpus(phrase.c_str());
|
|
if(locations.size()==0) {
|
|
cerr<<"No occurrences found!!\n";
|
|
}
|
|
for (vector<S_SimplePhraseLocationElement>::iterator i=locations.begin(); i != locations.end(); ++i) {
|
|
occur_set.push_back(i->sentIdInCorpus);
|
|
}
|
|
|
|
std::sort(occur_set.begin(), occur_set.end());
|
|
SentIdSet::iterator it = std::unique(occur_set.begin(), occur_set.end());
|
|
occur_set.resize(it - occur_set.begin());
|
|
|
|
return occur_set;
|
|
}
|
|
|
|
|
|
// slight simplicifaction: we consider all sentences in which "a" and "b" occur to be instances of the rule "a [X][X] b".
|
|
SentIdSet lookup_multiple_phrases(vector<std::string> & phrases, C_SuffixArraySearchApplicationBase & my_sa, const std::string & rule, PhraseSetMap & cache)
|
|
{
|
|
|
|
if (phrases.size() == 1) {
|
|
return lookup_phrase(phrases.front(), my_sa);
|
|
}
|
|
|
|
else {
|
|
SentIdSet main_set;
|
|
ClockedSentIdSet & clocked_first_set = cache[phrases.front()];
|
|
SentIdSet & first_set = clocked_first_set.first;
|
|
clocked_first_set.second = clock();
|
|
|
|
bool first = true;
|
|
if (first_set.empty()) {
|
|
first_set = lookup_phrase(phrases.front(), my_sa);
|
|
}
|
|
for (vector<std::string>::iterator phrase=phrases.begin()+1; phrase != phrases.end(); ++phrase) {
|
|
ClockedSentIdSet & clocked_temp_set = cache[*phrase];
|
|
SentIdSet & temp_set = clocked_temp_set.first;
|
|
clocked_temp_set.second = clock();
|
|
|
|
if (temp_set.empty()) {
|
|
temp_set = lookup_phrase(*phrase, my_sa);
|
|
}
|
|
if (first) {
|
|
main_set = ordered_set_intersect(first_set,temp_set);
|
|
first = false;
|
|
}
|
|
else {
|
|
main_set = ordered_set_intersect(main_set,temp_set);
|
|
}
|
|
if (temp_set.size() < MINIMUM_SIZE_TO_KEEP) {
|
|
cache.erase(*phrase);
|
|
}
|
|
}
|
|
|
|
if (first_set.size() < MINIMUM_SIZE_TO_KEEP) {
|
|
cache.erase(phrases.front());
|
|
}
|
|
|
|
return main_set;
|
|
}
|
|
}
|
|
|
|
|
|
SentIdSet find_occurrences(const std::string& rule, C_SuffixArraySearchApplicationBase & my_sa, PhraseSetMap & cache)
|
|
{
|
|
SentIdSet sa_set;
|
|
|
|
// we search for hierarchical rules by stripping away NT and looking for terminals sequences
|
|
// if a rule contains multiple sequences of terminals, we intersect their occurrences.
|
|
if (hierarchical) {
|
|
// std::cerr << "splitting up phrase: " << phrase << "\n";
|
|
int pos = 0;
|
|
int NTStartPos, NTEndPos;
|
|
vector<std::string> phrases;
|
|
while (rule.find("] ", pos) < rule.size()) {
|
|
NTStartPos = rule.find("[",pos) - 1; // -1 to cut space before NT
|
|
NTEndPos = rule.find("] ",pos);
|
|
if (NTStartPos < pos) { // no space: NT at start of rule (or two consecutive NTs)
|
|
pos = NTEndPos + 2;
|
|
continue;
|
|
}
|
|
phrases.push_back(rule.substr(pos,NTStartPos-pos));
|
|
pos = NTEndPos + 2;
|
|
}
|
|
|
|
NTStartPos = rule.find("[",pos) - 1; // LHS of rule
|
|
if (NTStartPos > pos) {
|
|
phrases.push_back(rule.substr(pos,NTStartPos-pos));
|
|
}
|
|
|
|
sa_set = lookup_multiple_phrases(phrases, my_sa, rule, cache);
|
|
}
|
|
else {
|
|
sa_set = lookup_phrase(rule, my_sa);
|
|
}
|
|
return sa_set;
|
|
}
|
|
|
|
|
|
// input: unordered list of translation options for a single source phrase
|
|
void compute_cooc_stats_and_filter(std::vector<PTEntry*>& options)
|
|
{
|
|
if (pfe_filter_limit>0 && options.size() > pfe_filter_limit) {
|
|
nremoved_pfefilter += (options.size() - pfe_filter_limit);
|
|
std::nth_element(options.begin(), options.begin()+pfe_filter_limit, options.end(), PfeComparer());
|
|
for (std::vector<PTEntry*>::iterator i=options.begin()+pfe_filter_limit; i != options.end(); ++i)
|
|
delete *i;
|
|
options.erase(options.begin()+pfe_filter_limit,options.end());
|
|
}
|
|
if (pef_filter_only) return;
|
|
// std::cerr << "f phrase: " << options.front()->f_phrase << "\n";
|
|
SentIdSet fset;
|
|
fset = find_occurrences(options.front()->f_phrase, f_sa, fsets);
|
|
size_t cf = fset.size();
|
|
for (std::vector<PTEntry*>::iterator i=options.begin(); i != options.end(); ++i) {
|
|
const std::string& e_phrase = (*i)->e_phrase;
|
|
size_t cef=0;
|
|
ClockedSentIdSet& clocked_eset = esets[e_phrase];
|
|
SentIdSet & eset = clocked_eset.first;
|
|
clocked_eset.second = clock();
|
|
if (eset.empty()) {
|
|
eset = find_occurrences(e_phrase, e_sa, esets);
|
|
//std::cerr << "Looking up e-phrase: " << e_phrase << "\n";
|
|
}
|
|
size_t ce=eset.size();
|
|
if (ce < cf) {
|
|
for (SentIdSet::iterator i=eset.begin(); i != eset.end(); ++i) {
|
|
if (std::binary_search(fset.begin(), fset.end(), *i)) cef++;
|
|
}
|
|
} else {
|
|
for (SentIdSet::iterator i=fset.begin(); i != fset.end(); ++i) {
|
|
if (std::binary_search(eset.begin(), eset.end(), *i)) cef++;
|
|
}
|
|
}
|
|
double nlp = -log(fisher_exact(cef, cf, ce));
|
|
(*i)->set_cooc_stats(cef, cf, ce, nlp);
|
|
if (ce < MINIMUM_SIZE_TO_KEEP) {
|
|
esets.erase(e_phrase);
|
|
}
|
|
|
|
}
|
|
std::vector<PTEntry*>::iterator new_end =
|
|
std::remove_if(options.begin(), options.end(), NlogSigThresholder(sig_filter_limit));
|
|
nremoved_sigfilter += (options.end() - new_end);
|
|
options.erase(new_end,options.end());
|
|
}
|
|
|
|
void prune_cache(PhraseSetMap & psm) {
|
|
if(max_cache && psm.size() > max_cache) {
|
|
std::vector<clock_t> clocks;
|
|
for(PhraseSetMap::iterator it = psm.begin(); it != psm.end(); it++)
|
|
clocks.push_back(it->second.second);
|
|
|
|
std::sort(clocks.begin(), clocks.end());
|
|
clock_t out = clocks[psm.size()-max_cache];
|
|
|
|
for(PhraseSetMap::iterator it = psm.begin(); it != psm.end(); it++)
|
|
if(it->second.second < out)
|
|
psm.erase(it);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char * argv[])
|
|
{
|
|
int c;
|
|
const char* efile=0;
|
|
const char* ffile=0;
|
|
int pfe_index = 2;
|
|
while ((c = getopt(argc, argv, "cpf:e:i:n:l:m:h")) != -1) {
|
|
switch (c) {
|
|
case 'e':
|
|
efile = optarg;
|
|
break;
|
|
case 'f':
|
|
ffile = optarg;
|
|
break;
|
|
case 'i': // index of pfe in phrase table
|
|
pfe_index = atoi(optarg);
|
|
break;
|
|
case 'n': // keep only the top n entries in phrase table sorted by p(f|e) (0=all)
|
|
pfe_filter_limit = atoi(optarg);
|
|
std::cerr << "P(f|e) filter limit: " << pfe_filter_limit << std::endl;
|
|
break;
|
|
case 'c':
|
|
print_cooc_counts = true;
|
|
break;
|
|
case 'p':
|
|
print_neglog_significance = true;
|
|
break;
|
|
case 'h':
|
|
hierarchical = true;
|
|
break;
|
|
case 'm':
|
|
max_cache = atoi(optarg);
|
|
break;
|
|
case 'l':
|
|
std::cerr << "-l = " << optarg << "\n";
|
|
if (strcmp(optarg,"a+e") == 0) {
|
|
sig_filter_limit = ALPHA_PLUS_EPS;
|
|
} else if (strcmp(optarg,"a-e") == 0) {
|
|
sig_filter_limit = ALPHA_MINUS_EPS;
|
|
} else {
|
|
char *x;
|
|
sig_filter_limit = strtod(optarg, &x);
|
|
if (sig_filter_limit < 0.0) {
|
|
std::cerr << "Filter limit (-l) must be either 'a+e', 'a-e' or a real number >= 0.0\n";
|
|
usage();
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
usage();
|
|
}
|
|
}
|
|
if (sig_filter_limit == 0.0) pef_filter_only = true;
|
|
//-----------------------------------------------------------------------------
|
|
if (optind != argc || ((!efile || !ffile) && !pef_filter_only)) {
|
|
usage();
|
|
}
|
|
|
|
//load the indexed corpus with vocabulary(noVoc=false) and with offset(noOffset=false)
|
|
if (!pef_filter_only) {
|
|
e_sa.loadData_forSearch(efile, false, false);
|
|
f_sa.loadData_forSearch(ffile, false, false);
|
|
size_t elines = e_sa.returnTotalSentNumber();
|
|
size_t flines = f_sa.returnTotalSentNumber();
|
|
if (elines != flines) {
|
|
std::cerr << "Number of lines in e-corpus != number of lines in f-corpus!\n";
|
|
usage();
|
|
} else {
|
|
std::cerr << "Training corpus: " << elines << " lines\n";
|
|
num_lines = elines;
|
|
}
|
|
p_111 = -log(fisher_exact(1,1,1));
|
|
std::cerr << "\\alpha = " << p_111 << "\n";
|
|
if (sig_filter_limit == ALPHA_MINUS_EPS) {
|
|
sig_filter_limit = p_111 - 0.001;
|
|
} else if (sig_filter_limit == ALPHA_PLUS_EPS) {
|
|
sig_filter_limit = p_111 + 0.001;
|
|
}
|
|
std::cerr << "Sig filter threshold is = " << sig_filter_limit << "\n";
|
|
} else {
|
|
std::cerr << "Filtering using P(e|f) only. n=" << pfe_filter_limit << std::endl;
|
|
}
|
|
|
|
char tmpString[10000];
|
|
std::string prev = "";
|
|
std::vector<PTEntry*> options;
|
|
size_t pt_lines = 0;
|
|
while(!cin.eof()) {
|
|
cin.getline(tmpString,10000,'\n');
|
|
if(++pt_lines%10000==0) {
|
|
std::cerr << ".";
|
|
|
|
prune_cache(esets);
|
|
prune_cache(fsets);
|
|
|
|
if(pt_lines%500000==0)
|
|
std::cerr << "[n:"<<pt_lines<<"]\n";
|
|
}
|
|
|
|
if(strlen(tmpString)>0) {
|
|
PTEntry* pp = new PTEntry(tmpString, pfe_index);
|
|
if (prev != pp->f_phrase) {
|
|
prev = pp->f_phrase;
|
|
|
|
if (!options.empty()) { // always true after first line
|
|
compute_cooc_stats_and_filter(options);
|
|
}
|
|
for (std::vector<PTEntry*>::iterator i=options.begin(); i != options.end(); ++i) {
|
|
std::cout << **i << std::endl;
|
|
delete *i;
|
|
}
|
|
options.clear();
|
|
options.push_back(pp);
|
|
|
|
} else {
|
|
options.push_back(pp);
|
|
}
|
|
// for(int i=0;i<locations.size(); i++){
|
|
// cout<<"SentId="<<locations[i].sentIdInCorpus<<" Pos="<<(int)locations[i].posInSentInCorpus<<endl;
|
|
// }
|
|
}
|
|
}
|
|
compute_cooc_stats_and_filter(options);
|
|
for (std::vector<PTEntry*>::iterator i=options.begin(); i != options.end(); ++i) {
|
|
std::cout << **i << std::endl;
|
|
delete *i;
|
|
}
|
|
float pfefper = (100.0*(float)nremoved_pfefilter)/(float)pt_lines;
|
|
float sigfper = (100.0*(float)nremoved_sigfilter)/(float)pt_lines;
|
|
std::cerr << "\n\n------------------------------------------------------\n"
|
|
<< " unfiltered phrases pairs: " << pt_lines << "\n"
|
|
<< "\n"
|
|
<< " P(f|e) filter [first]: " << nremoved_pfefilter << " (" << pfefper << "%)\n"
|
|
<< " significance filter: " << nremoved_sigfilter << " (" << sigfper << "%)\n"
|
|
<< " TOTAL FILTERED: " << (nremoved_pfefilter + nremoved_sigfilter) << " (" << (sigfper + pfefper) << "%)\n"
|
|
<< "\n"
|
|
<< " FILTERED phrase pairs: " << (pt_lines - nremoved_pfefilter - nremoved_sigfilter) << " (" << (100.0-sigfper - pfefper) << "%)\n"
|
|
<< "------------------------------------------------------\n";
|
|
|
|
return 0;
|
|
}
|