mosesdecoder/moses/TranslationModel/DynSAInclude/onlineRLM.h
Jeroen Vermeulen 464615a0c3 Fix some clang++ warnings.
Compiling with clang++ at the default warning/error levels produces
some interesting warnings.  Here's a pair of fixes for the simplest
instances:

moses/TranslationModel/RuleTable/PhraseDictionaryFuzzyMatch.cpp:133:7:
warning: comparison of array 'path' equal to a null pointer is always
false [-Wtautological-pointer-compare]
  if (path == NULL) {
      ^~~~    ~~~~

(The code unnecessarily checks that an automatic variable has a
 non-null address).

moses/TranslationModel/DynSAInclude/onlineRLM.h:305:20:
warning: unsequenced modification and access to 'den_val' [-Wunsequenced]
  if(((den_val = query(&ngram[len - num_fnd], num_fnd - 1)) > 0) &&
               ^

(The code tries to cram too much into an "if" condition.)
2015-04-07 22:58:17 +07:00

543 lines
18 KiB
C++

#ifndef INC_DYNAMICLM_H
#define INC_DYNAMICLM_H
#include <algorithm>
#include <vector>
#include "perfectHash.h"
#include "RandLMCache.h"
#include "types.h"
#include "vocab.h"
/*
* DynamicLM manipulates LM
*/
using randlm::BitFilter;
using randlm::Cache;
const bool strict_checks_ = false;
//! @todo ask abby2
template<typename T>
class OnlineRLM: public PerfectHash<T>
{
public:
OnlineRLM(uint16_t MBs, int width, int bucketRange, count_t order,
Moses::Vocab* v, float qBase = 8): PerfectHash<T>(MBs, width, bucketRange, qBase),
vocab_(v), bAdapting_(false), order_(order), corpusSize_(0), alpha_(0) {
UTIL_THROW_IF2(vocab_ == 0, "Vocab object not set");
//instantiate quantizer class here
cache_ = new Cache<float>(8888.8888, 9999.9999); // unknown_value, null_value
alpha_ = new float[order_ + 1];
for(count_t i = 0; i <= order_; ++i)
alpha_[i] = i * log10(0.4);
cerr << "Initialzing auxillary bit filters...\n";
bPrefix_ = new BitFilter(this->cells_);
bHit_ = new BitFilter(this->cells_);
}
OnlineRLM(FileHandler* fin, count_t order):
PerfectHash<T>(fin), bAdapting_(true), order_(order), corpusSize_(0) {
load(fin);
cache_ = new Cache<float>(8888.8888, 9999.9999); // unknown_value, null_value
alpha_ = new float[order_ + 1];
for(count_t i = 0; i <= order_; ++i)
alpha_[i] = i * log10(0.4);
}
~OnlineRLM() {
delete[] alpha_;
if(bAdapting_) delete vocab_;
else vocab_ = NULL;
delete cache_;
delete bPrefix_;
delete bHit_;
}
float getProb(const wordID_t* ngram, int len, const void** state);
//float getProb2(const wordID_t* ngram, int len, const void** state);
bool insert(const std::vector<string>& ngram, const int value);
bool update(const std::vector<string>& ngram, const int value);
int query(const wordID_t* IDs, const int len);
int sbsqQuery(const std::vector<string>& ngram, int* len,
bool bStrict = false);
int sbsqQuery(const wordID_t* IDs, const int len, int* codes,
bool bStrict = false);
void remove(const std::vector<string>& ngram);
count_t heurDelete(count_t num2del, count_t order = 5);
uint64_t corpusSize() {
return corpusSize_;
}
void corpusSize(uint64_t c) {
corpusSize_ = c;
}
void clearCache() {
if(cache_) cache_->clear();
}
void save(FileHandler* fout);
void load(FileHandler* fin);
void randDelete(int num2del);
int countHits();
int countPrefixes();
int cleanUpHPD();
void clearMarkings();
void removeNonMarked();
Moses::Vocab* vocab_;
protected:
void markQueried(const uint64_t& index);
void markQueried(hpdEntry_t& value);
bool markPrefix(const wordID_t* IDs, const int len, bool bSet);
private:
const void* getContext(const wordID_t* ngram, int len);
const bool bAdapting_; // used to signal adaptation of model
const count_t order_; // LM order
uint64_t corpusSize_; // total training corpus size
float* alpha_; // backoff constant
Cache<float>* cache_;
BitFilter* bPrefix_;
BitFilter* bHit_;
};
template<typename T>
bool OnlineRLM<T>::insert(const std::vector<string>& ngram, const int value)
{
int len = ngram.size();
wordID_t wrdIDs[len];
uint64_t index(this->cells_ + 1);
for(int i = 0; i < len; ++i)
wrdIDs[i] = vocab_->GetWordID(ngram[i]);
index = PerfectHash<T>::insert(wrdIDs, len, value);
if(value > 1 && len < order_)
markPrefix(wrdIDs, ngram.size(), true); // mark context
// keep track of total items from training data minus "<s>"
if(ngram.size() == 1 && (!bAdapting_)) // hack to not change corpusSize when adapting
corpusSize_ += (wrdIDs[0] != vocab_->GetBOSWordID()) ? value : 0;
if(bAdapting_ && (index < this->cells_)) // mark to keep while adapting
markQueried(index);
return true;
}
template<typename T>
bool OnlineRLM<T>::update(const std::vector<string>& ngram, const int value)
{
int len = ngram.size();
std::vector<wordID_t> wrdIDs(len);
uint64_t index(this->cells_ + 1);
hpdEntry_t hpdItr;
vocab_->MakeOpen();
for(int i = 0; i < len; ++i)
wrdIDs[i] = vocab_->GetWordID(ngram[i]);
// if updating, minimize false positives by pre-checking if context already in model
bool bIncluded(true);
if(value > 1 && len < (int)order_)
bIncluded = markPrefix(&wrdIDs[0], ngram.size(), true); // mark context
if(bIncluded) { // if context found
bIncluded = PerfectHash<T>::update2(&wrdIDs[0], len, value, hpdItr, index);
if(index < this->cells_) {
markQueried(index);
} else if(hpdItr != this->dict_.end()) markQueried(hpdItr);
}
return bIncluded;
}
template<typename T>
int OnlineRLM<T>::query(const wordID_t* IDs, int len)
{
uint64_t filterIdx = 0;
hpdEntry_t hpdItr;
int value(0);
value = PerfectHash<T>::query(IDs, len, hpdItr, filterIdx);
if(value != -1) {
if(hpdItr != this->dict_.end()) {
//markQueried(hpdItr); // mark this event as "hit"
value -= ((value & this->hitMask_) != 0) ? this->hitMask_ : 0; // check for previous hit marks
} else {
UTIL_THROW_IF2(filterIdx >= this->cells_,
"Out of bound: " << filterIdx);
//markQueried(filterIdx);
}
}
return value > 0 ? value : 0;
}
template<typename T>
bool OnlineRLM<T>::markPrefix(const wordID_t* IDs, const int len, bool bSet)
{
if(len <= 1) return true; // only do this for for ngrams with context
static Cache<int> pfCache(-1, -1); // local prefix cache
int code(0);
if(!pfCache.checkCacheNgram(IDs, len - 1, &code, NULL)) {
hpdEntry_t hpdItr;
uint64_t filterIndex(0);
code = PerfectHash<T>::query(IDs, len - 1, hpdItr, filterIndex); // hash IDs[0..len-1]
if(code == -1) { // encountered false positive in pipeline
cerr << "WARNING: markPrefix(). The O-RLM is *not* well-formed.\n";
// add all prefixes or return false;
return false;
}
if(filterIndex != this->cells_ + 1) {
UTIL_THROW_IF2(hpdItr != this->dict_.end(), "Error");
if(bSet) bPrefix_->setBit(filterIndex); // mark index
else bPrefix_->clearBit(filterIndex); // unset index
} else {
UTIL_THROW_IF2(filterIndex != this->cells_ + 1, "Error");
//how to handle hpd prefixes?
}
if(pfCache.nodes() > 10000) pfCache.clear();
pfCache.setCacheNgram(IDs, len - 1, code, NULL);
}
return true;
}
template<typename T>
void OnlineRLM<T>::markQueried(const uint64_t& index)
{
bHit_->setBit(index);
//cerr << "filter[" << index << "] = " << this->filter_->read(index) << endl;
}
template<typename T>
void OnlineRLM<T>::markQueried(hpdEntry_t& value)
{
// set high bit of counter to indicate "hit" status
value->second |= this->hitMask_;
}
template<typename T>
void OnlineRLM<T>::remove(const std::vector<string>& ngram)
{
wordID_t IDs[ngram.size()];
for(count_t i = 0; i < ngram.size(); ++i)
IDs[i] = vocab_->GetWordID(ngram[i]);
PerfectHash<T>::remove(IDs, ngram.size());
}
template<typename T>
count_t OnlineRLM<T>::heurDelete(count_t num2del, count_t order)
{
count_t deleted = 0;
cout << "Deleting " << num2del << " of order "<< order << endl;
// delete from filter first
int full = *std::max_element(this->idxTracker_, this->idxTracker_
+ this->totBuckets_);
for(; full > 0; --full) // delete from fullest buckets first
for(int bk = 0; bk < this->totBuckets_; ++bk) {
if(deleted >= num2del) break;
if(this->idxTracker_[bk] == full) { // if full
uint64_t first = bk * this->bucketRange_,
last = first + this->bucketRange_;
for(uint64_t row = first; row < last; ++row) { // check each row
if(!(bHit_->testBit(row) || bPrefix_->testBit(row) )) {
if(this->filter_->read(row) != 0) {
PerfectHash<T>::remove(row); // remove from filter
++deleted;
}
}
}
}
}
if(deleted < num2del) {
// remove from hpd
cerr << "TODO! HPD deletions\n";
}
cerr << "Total deleted = " << deleted << endl;
return deleted;
}
template<typename T>
int OnlineRLM<T>::sbsqQuery(const std::vector<string>& ngram, int* codes,
bool bStrict)
{
wordID_t IDs[ngram.size()];
for(count_t i = 0; i < ngram.size(); ++i)
IDs[i] = vocab_->GetWordID(ngram[i]);
return sbsqQuery(IDs, ngram.size(), codes, bStrict);
}
template<typename T>
int OnlineRLM<T>::sbsqQuery(const wordID_t* IDs, const int len, int* codes,
bool bStrict)
{
uint64_t filterIdx = 0;
int val(0), fnd(0);
hpdEntry_t hpdItr;
for(int i = len - 1; i >= 0; --i) { // do subsequence filtering
//if(IDs[i] == Vocab::kOOVWordID) break;
val = PerfectHash<T>::query(&IDs[i], len - i, hpdItr, filterIdx);
if(val != -1) { // if event found
fnd = len - i; // increment found sequence
if(hpdItr != this->dict_.end()) {
val -= ((val & this->hitMask_) != 0) ? this->hitMask_ : 0; // account for previous hit marks
}
} else if(bStrict) {
break;
}
// add to value array
codes[i] = val > 0 ? val : 0;
}
while(bStrict && (fnd > 1)) { // do checks the other way
val = PerfectHash<T>::query(&IDs[len - fnd], fnd - 1, hpdItr, filterIdx);
if(val != -1) break; // if anything found
else --fnd; // else decrement found
}
return fnd;
}
template<typename T>
float OnlineRLM<T>::getProb(const wordID_t* ngram, int len,
const void** state)
{
static const float oovprob = log10(1.0 / (static_cast<float>(vocab_->Size()) - 1));
float logprob(0);
const void* context = (state) ? *state : 0;
// if full ngram and prob not in cache
if(!cache_->checkCacheNgram(ngram, len, &logprob, &context)) {
// get full prob and put in cache
int num_fnd(0), den_val(0);
int *in = new int[len]; // in[] keeps counts of increasing order numerator
for(int i = 0; i < len; ++i) in[i] = 0;
for(int i = len - 1; i >= 0; --i) {
if(ngram[i] == vocab_->GetkOOVWordID()) break; // no need to query if OOV
in[i] = query(&ngram[i], len - i);
if(in[i] > 0) {
num_fnd = len - i;
} else if(strict_checks_) break;
}
while(num_fnd > 1) { // get lower order count
//get sub-context of size one less than length found (exluding target)
den_val = query(&ngram[len - num_fnd], num_fnd - 1);
if((den_val > 0) &&
(den_val >= in[len - num_fnd]) && (in[len - num_fnd] > 0)) {
break;
} else --num_fnd; // else backoff to lower ngram order
}
if(num_fnd == 1 && (in[len - 1] < 1)) // sanity check for unigrams
num_fnd = 0;
switch(num_fnd) { // find prob (need to refactor into precomputation)
case 0: // OOV
logprob = alpha_[len] + oovprob;
break;
case 1: // unigram found only
UTIL_THROW_IF2(in[len - 1] <= 0, "Error");
logprob = alpha_[len - 1] + (corpusSize_ > 0 ?
log10(static_cast<float>(in[len - 1]) / static_cast<float>(corpusSize_)) : 0);
//logprob = alpha_[len - 1] +
//log10(static_cast<float>(in[len - 1]) / static_cast<float>(corpusSize_));
break;
default:
UTIL_THROW_IF2(den_val <= 0, "Error");
//if(subgram == in[len - found]) ++subgram; // avoid returning zero probs????
logprob = alpha_[len - num_fnd] +
log10(static_cast<float>(in[len - num_fnd]) / static_cast<float>(den_val));
break;
}
// need unique context
context = getContext(&ngram[len - num_fnd], num_fnd);
// put whatever was found in cache
cache_->setCacheNgram(ngram, len, logprob, context);
} // end checkCache
return logprob;
}
template<typename T>
const void* OnlineRLM<T>::getContext(const wordID_t* ngram, int len)
{
int dummy(0);
float**addresses = new float*[len]; // only interested in addresses of cache
UTIL_THROW_IF2(cache_->getCache2(ngram, len, &addresses[0], &dummy) != len,
"Error");
// return address of cache node
float *addr0 = addresses[0];
free( addresses );
return (const void*)addr0;
}
template<typename T>
void OnlineRLM<T>::randDelete(int num2del)
{
int deleted = 0;
for(uint64_t i = 0; i < this->cells_; i++) {
if(this->filter_->read(i) != 0) {
PerfectHash<T>::remove(i);
++deleted;
}
if(deleted >= num2del) break;
}
}
template<typename T>
int OnlineRLM<T>::countHits()
{
int hit(0);
for(uint64_t i = 0; i < this->cells_; ++i)
if(bHit_->testBit(i)) ++hit;
iterate(this->dict_, itr)
if((itr->second & this->hitMask_) != 0)
++hit;
cerr << "Hit count = " << hit << endl;
return hit;
}
template<typename T>
int OnlineRLM<T>::countPrefixes()
{
int pfx(0);
for(uint64_t i = 0; i < this->cells_; ++i)
if(bPrefix_->testBit(i)) ++pfx;
//TODO::Handle hpdict prefix counts
cerr << "Prefix count (in filter) = " << pfx << endl;
return pfx;
}
template<typename T>
int OnlineRLM<T>::cleanUpHPD()
{
cerr << "HPD size before = " << this->dict_.size() << endl;
std::vector<string> vDel, vtmp;
iterate(this->dict_, itr) {
if(((itr->second & this->hitMask_) == 0) && // if not hit during testing
(Utils::splitToStr(itr->first, vtmp, "¬") >= 3)) { // and higher order ngram
vDel.push_back(itr->first);
}
}
iterate(vDel, vitr)
this->dict_.erase(*vitr);
cerr << "HPD size after = " << this->dict_.size() << endl;
return vDel.size();
}
template<typename T>
void OnlineRLM<T>::clearMarkings()
{
cerr << "clearing all event hits\n";
bHit_->reset();
count_t* value(0);
iterate(this->dict_, itr) {
value = &itr->second;
*value -= ((*value & this->hitMask_) != 0) ? this->hitMask_ : 0;
}
}
template<typename T>
void OnlineRLM<T>::save(FileHandler* fout)
{
cerr << "Saving ORLM...\n";
// save vocab
vocab_->Save(fout);
fout->write((char*)&corpusSize_, sizeof(corpusSize_));
fout->write((char*)&order_, sizeof(order_));
bPrefix_->save(fout);
bHit_->save(fout);
// save everything else
PerfectHash<T>::save(fout);
cerr << "Finished saving ORLM." << endl;
}
template<typename T>
void OnlineRLM<T>::load(FileHandler* fin)
{
cerr << "Loading ORLM...\n";
// load vocab first
vocab_ = new Moses::Vocab(fin);
UTIL_THROW_IF2(vocab_ == 0, "Vocab object not set");
fin->read((char*)&corpusSize_, sizeof(corpusSize_));
cerr << "\tCorpus size = " << corpusSize_ << endl;
fin->read((char*)&order_, sizeof(order_));
cerr << "\tModel order = " << order_ << endl;
bPrefix_ = new BitFilter(fin);
bHit_ = new BitFilter(fin);
// load everything else
PerfectHash<T>::load(fin);
}
template<typename T>
void OnlineRLM<T>::removeNonMarked()
{
cerr << "deleting all unused events\n";
int deleted(0);
for(uint64_t i = 0; i < this->cells_; ++i) {
if(!(bHit_->testBit(i) || bPrefix_->testBit(i))
&& (this->filter_->read(i) != 0)) {
PerfectHash<T>::remove(i);
++deleted;
}
}
deleted += cleanUpHPD();
cerr << "total removed from ORLM = " << deleted << endl;
}
/*
template<typename T>
float OnlineRLM<T>::getProb2(const wordID_t* ngram, int len, const void** state) {
static const float oovprob = log10(1.0 / (static_cast<float>(vocab_->size()) - 1));
float log_prob(0);
const void* context_state(NULL);
int found;
int* denom_codes[order_];
int* num_codes[order_ + 1];
int denom_found(0);
cerr << "length=" << len << endl;
// constrain cache queries using model assumptions
int denom_len = cache_->getCache(ngram, len - 1, &denom_codes[0], &denom_found);
cerr << "denom_len = " << denom_len << endl;
int num_len = cache_->getCache(&ngram[len - denom_len - 1], denom_len + 1,
&num_codes[0], &found);
cerr << "num_len= " << num_len << endl;
// keed reducing ngram size until both denominator and numerator are found
// allowed to leave kUnknownCode in cache because we check for this.
found = num_len; // guaranteed to be <= denom_len + 1
// still check for OOV
for (int i = len - found; i < len; ++i)
if (ngram[i] == Vocab::kOOVWordID) {
found = len - i - 1;
}
// check for relative estimator
while(found > 1) {
if(*denom_codes[found-1] == cache_unk_ &&
((*denom_codes[found-1] = query(&ngram[len-found], found-1)) == 0)) {
//!struct_->query(&ngram[len-*found], *found-1, kMainEventIdx, denom_codes[*found-1])) {
*num_codes[found] = cache_unk_;
} else {
if(*num_codes[found] != cache_unk_ ||
((*num_codes[found] = query(&ngram[len-found], found)) <= *denom_codes[found-1]))
// struct_->query(&ngram[len-*found], *found, kMainEventIdx,
// num_codes[*found], *denom_codes[*found-1]))
break;
}
--found;
}
// didn't find bigram numerator or unigram denominator
if (found == 1)
found = *num_codes[1] != cache_unk_
|| ((*num_codes[1] = query(&ngram[len - 1], 1)) != 0);
//struct_->query(&ngram[len - 1], 1, kMainEventIdx, num_codes[1]);
// ....
// return estimate applying correct backoff score (precomputed)
// store full log prob with complete ngram (even if backed off)
switch (found) {
case 0: // no observation: assign prob of 'new word' in training data
log_prob = alpha_[len] + oovprob;
//log_prob = stupid_backoff_log10_[len] + uniform_log10prob_;
break;
case 1: // unigram over whole corpus
log_prob = alpha_[len - 1] +
log10(static_cast<float>(*num_codes[1]) / static_cast<float>(corpusSize_));
//log_prob = log_quantiser_->getLog10Value(*num_codes[1]) - corpus_size_log10_
// + stupid_backoff_log10_[len - 1]; // precomputed
break;
default: // otherwise use both statistics and (possibly zero) backoff weight
log_prob = alpha_[len - found] +
log10(static_cast<float>(*num_codes[found]) / static_cast<float>(*denom_codes[found-1]));
//log_prob = log_quantiser_->getLog10Value(*num_codes[*found ])
// - log_quantiser_->getLog10Value(*denom_codes[*found - 1])
// + stupid_backoff_log10_[len - *found];
}
context_state = (const void*)num_codes[found == len ? found - 1 : found];;
//probCache_->store(len, log_prob, context_state);
if (state)
*state = context_state;
return log_prob;
}
*/
#endif