mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-07 20:17:48 +03:00
197 lines
6.6 KiB
C++
197 lines
6.6 KiB
C++
#include <fstream>
|
|
#include "GlobalLexicalModel.h"
|
|
#include "StaticData.h"
|
|
#include "InputFileStream.h"
|
|
#include "TranslationOption.h"
|
|
#include "UserMessage.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace Moses
|
|
{
|
|
GlobalLexicalModel::GlobalLexicalModel(const std::string &line)
|
|
: StatelessFeatureFunction("GlobalLexicalModel",1, line)
|
|
{
|
|
std::cerr << "Creating global lexical model...\n";
|
|
|
|
string filePath;
|
|
vector<FactorType> inputFactors, outputFactors;
|
|
|
|
for (size_t i = 0; i < m_args.size(); ++i) {
|
|
const vector<string> &args = m_args[i];
|
|
|
|
if (args[0] == "file") {
|
|
CHECK(args.size() == 2);
|
|
filePath = args[1];
|
|
}
|
|
else if (args[0] == "inputFactors") {
|
|
inputFactors = Tokenize<FactorType>(args[1],",");
|
|
}
|
|
else if (args[0] == "outputFactors") {
|
|
outputFactors = Tokenize<FactorType>(args[1],",");
|
|
}
|
|
else {
|
|
throw "Unknown argument " + args[0];
|
|
}
|
|
}
|
|
|
|
// load model
|
|
LoadData( filePath, inputFactors, outputFactors );
|
|
|
|
// define bias word
|
|
FactorCollection &factorCollection = FactorCollection::Instance();
|
|
m_bias = new Word();
|
|
const Factor* factor = factorCollection.AddFactor( Input, inputFactors[0], "**BIAS**" );
|
|
m_bias->SetFactor( inputFactors[0], factor );
|
|
|
|
}
|
|
|
|
GlobalLexicalModel::~GlobalLexicalModel()
|
|
{
|
|
// delete words in the hash data structure
|
|
DoubleHash::const_iterator iter;
|
|
for(iter = m_hash.begin(); iter != m_hash.end(); iter++ ) {
|
|
map< const Word*, float, WordComparer >::const_iterator iter2;
|
|
for(iter2 = iter->second.begin(); iter2 != iter->second.end(); iter2++ ) {
|
|
delete iter2->first; // delete input word
|
|
}
|
|
delete iter->first; // delete output word
|
|
}
|
|
}
|
|
|
|
void GlobalLexicalModel::LoadData(const string &filePath,
|
|
const vector< FactorType >& inFactors,
|
|
const vector< FactorType >& outFactors)
|
|
{
|
|
FactorCollection &factorCollection = FactorCollection::Instance();
|
|
const std::string& factorDelimiter = StaticData::Instance().GetFactorDelimiter();
|
|
|
|
VERBOSE(2, "Loading global lexical model from file " << filePath << endl);
|
|
|
|
m_inputFactors = FactorMask(inFactors);
|
|
m_outputFactors = FactorMask(outFactors);
|
|
InputFileStream inFile(filePath);
|
|
|
|
// reading in data one line at a time
|
|
size_t lineNum = 0;
|
|
string line;
|
|
while(getline(inFile, line)) {
|
|
++lineNum;
|
|
vector<string> token = Tokenize<string>(line, " ");
|
|
|
|
if (token.size() != 3) { // format checking
|
|
stringstream errorMessage;
|
|
errorMessage << "Syntax error at " << filePath << ":" << lineNum << endl << line << endl;
|
|
UserMessage::Add(errorMessage.str());
|
|
abort();
|
|
}
|
|
|
|
// create the output word
|
|
Word *outWord = new Word();
|
|
vector<string> factorString = Tokenize( token[0], factorDelimiter );
|
|
for (size_t i=0 ; i < outFactors.size() ; i++) {
|
|
const FactorDirection& direction = Output;
|
|
const FactorType& factorType = outFactors[i];
|
|
const Factor* factor = factorCollection.AddFactor( direction, factorType, factorString[i] );
|
|
outWord->SetFactor( factorType, factor );
|
|
}
|
|
|
|
// create the input word
|
|
Word *inWord = new Word();
|
|
factorString = Tokenize( token[1], factorDelimiter );
|
|
for (size_t i=0 ; i < inFactors.size() ; i++) {
|
|
const FactorDirection& direction = Input;
|
|
const FactorType& factorType = inFactors[i];
|
|
const Factor* factor = factorCollection.AddFactor( direction, factorType, factorString[i] );
|
|
inWord->SetFactor( factorType, factor );
|
|
}
|
|
|
|
// maximum entropy feature score
|
|
float score = Scan<float>(token[2]);
|
|
|
|
// std::cerr << "storing word " << *outWord << " " << *inWord << " " << score << endl;
|
|
|
|
// store feature in hash
|
|
DoubleHash::iterator keyOutWord = m_hash.find( outWord );
|
|
if( keyOutWord == m_hash.end() ) {
|
|
m_hash[outWord][inWord] = score;
|
|
} else { // already have hash for outword, delete the word to avoid leaks
|
|
(keyOutWord->second)[inWord] = score;
|
|
delete outWord;
|
|
}
|
|
}
|
|
}
|
|
|
|
void GlobalLexicalModel::InitializeForInput( Sentence const& in )
|
|
{
|
|
m_local.reset(new ThreadLocalStorage);
|
|
m_local->input = ∈
|
|
}
|
|
|
|
float GlobalLexicalModel::ScorePhrase( const TargetPhrase& targetPhrase ) const
|
|
{
|
|
const Sentence& input = *(m_local->input);
|
|
float score = 0;
|
|
for(size_t targetIndex = 0; targetIndex < targetPhrase.GetSize(); targetIndex++ ) {
|
|
float sum = 0;
|
|
const Word& targetWord = targetPhrase.GetWord( targetIndex );
|
|
VERBOSE(2,"glm " << targetWord << ": ");
|
|
const DoubleHash::const_iterator targetWordHash = m_hash.find( &targetWord );
|
|
if( targetWordHash != m_hash.end() ) {
|
|
SingleHash::const_iterator inputWordHash = targetWordHash->second.find( m_bias );
|
|
if( inputWordHash != targetWordHash->second.end() ) {
|
|
VERBOSE(2,"*BIAS* " << inputWordHash->second);
|
|
sum += inputWordHash->second;
|
|
}
|
|
|
|
set< const Word*, WordComparer > alreadyScored; // do not score a word twice
|
|
for(size_t inputIndex = 0; inputIndex < input.GetSize(); inputIndex++ ) {
|
|
const Word& inputWord = input.GetWord( inputIndex );
|
|
if ( alreadyScored.find( &inputWord ) == alreadyScored.end() ) {
|
|
SingleHash::const_iterator inputWordHash = targetWordHash->second.find( &inputWord );
|
|
if( inputWordHash != targetWordHash->second.end() ) {
|
|
VERBOSE(2," " << inputWord << " " << inputWordHash->second);
|
|
sum += inputWordHash->second;
|
|
}
|
|
alreadyScored.insert( &inputWord );
|
|
}
|
|
}
|
|
}
|
|
// Hal Daume says: 1/( 1 + exp [ - sum_i w_i * f_i ] )
|
|
VERBOSE(2," p=" << FloorScore( log(1/(1+exp(-sum))) ) << endl);
|
|
score += FloorScore( log(1/(1+exp(-sum))) );
|
|
}
|
|
return score;
|
|
}
|
|
|
|
float GlobalLexicalModel::GetFromCacheOrScorePhrase( const TargetPhrase& targetPhrase ) const
|
|
{
|
|
LexiconCache& m_cache = m_local->cache;
|
|
const LexiconCache::const_iterator query = m_cache.find( &targetPhrase );
|
|
if ( query != m_cache.end() ) {
|
|
return query->second;
|
|
}
|
|
|
|
float score = ScorePhrase( targetPhrase );
|
|
m_cache.insert( pair<const TargetPhrase*, float>(&targetPhrase, score) );
|
|
//VERBOSE(2, "add to cache " << targetPhrase << ": " << score << endl);
|
|
return score;
|
|
}
|
|
|
|
void GlobalLexicalModel::Evaluate
|
|
(const PhraseBasedFeatureContext& context,
|
|
ScoreComponentCollection* accumulator) const
|
|
{
|
|
accumulator->PlusEquals( this,
|
|
GetFromCacheOrScorePhrase(context.GetTargetPhrase()) );
|
|
}
|
|
|
|
void GlobalLexicalModel::Evaluate(const TargetPhrase &targetPhrase
|
|
, ScoreComponentCollection &scoreBreakdown
|
|
, ScoreComponentCollection &estimatedFutureScore) const
|
|
{
|
|
CHECK(false);
|
|
}
|
|
|
|
}
|