mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-26 13:23:25 +03:00
446 lines
16 KiB
C++
446 lines
16 KiB
C++
/***********************************************************************
|
|
Moses - factored phrase-based language decoder
|
|
Copyright (C) 2014- University of Edinburgh
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
***********************************************************************/
|
|
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <list>
|
|
|
|
#include <boost/unordered_set.hpp>
|
|
|
|
#include "util/file_piece.hh"
|
|
#include "util/tokenize_piece.hh"
|
|
|
|
#include "BleuScorer.h"
|
|
#include "ForestRescore.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace MosesTuning
|
|
{
|
|
|
|
std::ostream& operator<<(std::ostream& out, const WordVec& wordVec)
|
|
{
|
|
out << "[";
|
|
for (size_t i = 0; i < wordVec.size(); ++i) {
|
|
out << wordVec[i]->first;
|
|
if (i+1< wordVec.size()) out << " ";
|
|
}
|
|
out << "]";
|
|
return out;
|
|
}
|
|
|
|
|
|
void ReferenceSet::Load(const vector<string>& files, Vocab& vocab)
|
|
{
|
|
for (size_t i = 0; i < files.size(); ++i) {
|
|
util::FilePiece fh(files[i].c_str());
|
|
size_t sentenceId = 0;
|
|
while(true) {
|
|
StringPiece line;
|
|
try {
|
|
line = fh.ReadLine();
|
|
} catch (util::EndOfFileException &e) {
|
|
break;
|
|
}
|
|
AddLine(sentenceId, line, vocab);
|
|
++sentenceId;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void ReferenceSet::AddLine(size_t sentenceId, const StringPiece& line, Vocab& vocab)
|
|
{
|
|
//cerr << line << endl;
|
|
NgramCounter ngramCounts;
|
|
list<WordVec> openNgrams;
|
|
size_t length = 0;
|
|
//tokenize & count
|
|
for (util::TokenIter<util::SingleCharacter, true> j(line, util::SingleCharacter(' ')); j; ++j) {
|
|
const Vocab::Entry* nextTok = &(vocab.FindOrAdd(*j));
|
|
++length;
|
|
openNgrams.push_front(WordVec());
|
|
for (list<WordVec>::iterator k = openNgrams.begin(); k != openNgrams.end(); ++k) {
|
|
k->push_back(nextTok);
|
|
++ngramCounts[*k];
|
|
}
|
|
if (openNgrams.size() >= kBleuNgramOrder) openNgrams.pop_back();
|
|
}
|
|
|
|
//merge into overall ngram map
|
|
for (NgramCounter::const_iterator ni = ngramCounts.begin();
|
|
ni != ngramCounts.end(); ++ni) {
|
|
size_t count = ni->second;
|
|
//cerr << *ni << " " << count << endl;
|
|
if (ngramCounts_.size() <= sentenceId) ngramCounts_.resize(sentenceId+1);
|
|
NgramMap::iterator totalsIter = ngramCounts_[sentenceId].find(ni->first);
|
|
if (totalsIter == ngramCounts_[sentenceId].end()) {
|
|
ngramCounts_[sentenceId][ni->first] = pair<size_t,size_t>(count,count);
|
|
} else {
|
|
ngramCounts_[sentenceId][ni->first].first = max(count, ngramCounts_[sentenceId][ni->first].first); //clip
|
|
ngramCounts_[sentenceId][ni->first].second += count; //no clip
|
|
}
|
|
}
|
|
//length
|
|
if (lengths_.size() <= sentenceId) lengths_.resize(sentenceId+1);
|
|
//TODO - length strategy - this is MIN
|
|
if (!lengths_[sentenceId]) {
|
|
lengths_[sentenceId] = length;
|
|
} else {
|
|
lengths_[sentenceId] = min(length,lengths_[sentenceId]);
|
|
}
|
|
//cerr << endl;
|
|
|
|
}
|
|
|
|
size_t ReferenceSet::NgramMatches(size_t sentenceId, const WordVec& ngram, bool clip) const
|
|
{
|
|
const NgramMap& ngramCounts = ngramCounts_.at(sentenceId);
|
|
NgramMap::const_iterator ngi = ngramCounts.find(ngram);
|
|
if (ngi == ngramCounts.end()) return 0;
|
|
return clip ? ngi->second.first : ngi->second.second;
|
|
}
|
|
|
|
VertexState::VertexState(): bleuStats(kBleuNgramOrder), targetLength(0) {}
|
|
|
|
void HgBleuScorer::UpdateMatches(const NgramCounter& counts, vector<FeatureStatsType>& bleuStats ) const
|
|
{
|
|
for (NgramCounter::const_iterator ngi = counts.begin(); ngi != counts.end(); ++ngi) {
|
|
//cerr << "Checking: " << *ngi << " matches " << references_.NgramMatches(sentenceId_,*ngi,false) << endl;
|
|
size_t order = ngi->first.size();
|
|
size_t count = ngi->second;
|
|
bleuStats[(order-1)*2 + 1] += count;
|
|
bleuStats[(order-1) * 2] += min(count, references_.NgramMatches(sentenceId_,ngi->first,false));
|
|
}
|
|
}
|
|
|
|
size_t HgBleuScorer::GetTargetLength(const Edge& edge) const
|
|
{
|
|
size_t targetLength = 0;
|
|
for (size_t i = 0; i < edge.Words().size(); ++i) {
|
|
const Vocab::Entry* word = edge.Words()[i];
|
|
if (word) ++targetLength;
|
|
}
|
|
for (size_t i = 0; i < edge.Children().size(); ++i) {
|
|
const VertexState& state = vertexStates_[edge.Children()[i]];
|
|
targetLength += state.targetLength;
|
|
}
|
|
return targetLength;
|
|
}
|
|
|
|
FeatureStatsType HgBleuScorer::Score(const Edge& edge, const Vertex& head, vector<FeatureStatsType>& bleuStats)
|
|
{
|
|
NgramCounter ngramCounts;
|
|
size_t childId = 0;
|
|
size_t wordId = 0;
|
|
size_t contextId = 0; //position within left or right context
|
|
const VertexState* vertexState = NULL;
|
|
bool inLeftContext = false;
|
|
bool inRightContext = false;
|
|
list<WordVec> openNgrams;
|
|
const Vocab::Entry* currentWord = NULL;
|
|
while (wordId < edge.Words().size()) {
|
|
currentWord = edge.Words()[wordId];
|
|
if (currentWord != NULL) {
|
|
++wordId;
|
|
} else {
|
|
if (!inLeftContext && !inRightContext) {
|
|
//entering a vertex
|
|
assert(!vertexState);
|
|
vertexState = &(vertexStates_[edge.Children()[childId]]);
|
|
++childId;
|
|
if (vertexState->leftContext.size()) {
|
|
inLeftContext = true;
|
|
contextId = 0;
|
|
currentWord = vertexState->leftContext[contextId];
|
|
} else {
|
|
//empty context
|
|
vertexState = NULL;
|
|
++wordId;
|
|
continue;
|
|
}
|
|
} else {
|
|
//already in a vertex
|
|
++contextId;
|
|
if (inLeftContext && contextId < vertexState->leftContext.size()) {
|
|
//still in left context
|
|
currentWord = vertexState->leftContext[contextId];
|
|
} else if (inLeftContext) {
|
|
//at end of left context
|
|
if (vertexState->leftContext.size() == kBleuNgramOrder-1) {
|
|
//full size context, jump to right state
|
|
openNgrams.clear();
|
|
inLeftContext = false;
|
|
inRightContext = true;
|
|
contextId = 0;
|
|
currentWord = vertexState->rightContext[contextId];
|
|
} else {
|
|
//short context, just ignore right context
|
|
inLeftContext = false;
|
|
vertexState = NULL;
|
|
++wordId;
|
|
continue;
|
|
}
|
|
} else {
|
|
//in right context
|
|
if (contextId < vertexState->rightContext.size()) {
|
|
currentWord = vertexState->rightContext[contextId];
|
|
} else {
|
|
//leaving vertex
|
|
inRightContext = false;
|
|
vertexState = NULL;
|
|
++wordId;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
assert(currentWord);
|
|
if (graph_.IsBoundary(currentWord)) continue;
|
|
openNgrams.push_front(WordVec());
|
|
openNgrams.front().reserve(kBleuNgramOrder);
|
|
for (list<WordVec>::iterator k = openNgrams.begin(); k != openNgrams.end(); ++k) {
|
|
k->push_back(currentWord);
|
|
//Only insert ngrams that cross boundaries
|
|
if (!vertexState || (inLeftContext && k->size() > contextId+1)) ++ngramCounts[*k];
|
|
}
|
|
if (openNgrams.size() >= kBleuNgramOrder) openNgrams.pop_back();
|
|
}
|
|
|
|
//Collect matches
|
|
//This edge
|
|
//cerr << "edge ngrams" << endl;
|
|
UpdateMatches(ngramCounts, bleuStats);
|
|
|
|
//Child vertexes
|
|
for (size_t i = 0; i < edge.Children().size(); ++i) {
|
|
//cerr << "vertex ngrams " << edge.Children()[i] << endl;
|
|
for (size_t j = 0; j < bleuStats.size(); ++j) {
|
|
bleuStats[j] += vertexStates_[edge.Children()[i]].bleuStats[j];
|
|
}
|
|
}
|
|
|
|
|
|
FeatureStatsType sourceLength = head.SourceCovered();
|
|
size_t referenceLength = references_.Length(sentenceId_);
|
|
FeatureStatsType effectiveReferenceLength =
|
|
sourceLength / totalSourceLength_ * referenceLength;
|
|
|
|
bleuStats[bleuStats.size()-1] = effectiveReferenceLength;
|
|
//backgroundBleu_[backgroundBleu_.size()-1] =
|
|
// backgroundRefLength_ * sourceLength / totalSourceLength_;
|
|
FeatureStatsType bleu = sentenceLevelBackgroundBleu(bleuStats, backgroundBleu_);
|
|
|
|
return bleu;
|
|
}
|
|
|
|
void HgBleuScorer::UpdateState(const Edge& winnerEdge, size_t vertexId, const vector<FeatureStatsType>& bleuStats)
|
|
{
|
|
//TODO: Maybe more efficient to absorb into the Score() method
|
|
VertexState& vertexState = vertexStates_[vertexId];
|
|
//cerr << "Updating state for " << vertexId << endl;
|
|
|
|
//leftContext
|
|
int wi = 0;
|
|
const VertexState* childState = NULL;
|
|
int contexti = 0; //index within child context
|
|
int childi = 0;
|
|
while (vertexState.leftContext.size() < (kBleuNgramOrder-1)) {
|
|
if ((size_t)wi >= winnerEdge.Words().size()) break;
|
|
const Vocab::Entry* word = winnerEdge.Words()[wi];
|
|
if (word != NULL) {
|
|
vertexState.leftContext.push_back(word);
|
|
++wi;
|
|
} else {
|
|
if (childState == NULL) {
|
|
//start of child state
|
|
childState = &(vertexStates_[winnerEdge.Children()[childi++]]);
|
|
contexti = 0;
|
|
}
|
|
if ((size_t)contexti < childState->leftContext.size()) {
|
|
vertexState.leftContext.push_back(childState->leftContext[contexti++]);
|
|
} else {
|
|
//end of child context
|
|
childState = NULL;
|
|
++wi;
|
|
}
|
|
}
|
|
}
|
|
|
|
//rightContext
|
|
wi = winnerEdge.Words().size() - 1;
|
|
childState = NULL;
|
|
childi = winnerEdge.Children().size() - 1;
|
|
while (vertexState.rightContext.size() < (kBleuNgramOrder-1)) {
|
|
if (wi < 0) break;
|
|
const Vocab::Entry* word = winnerEdge.Words()[wi];
|
|
if (word != NULL) {
|
|
vertexState.rightContext.push_back(word);
|
|
--wi;
|
|
} else {
|
|
if (childState == NULL) {
|
|
//start (ie rhs) of child state
|
|
childState = &(vertexStates_[winnerEdge.Children()[childi--]]);
|
|
contexti = childState->rightContext.size()-1;
|
|
}
|
|
if (contexti >= 0) {
|
|
vertexState.rightContext.push_back(childState->rightContext[contexti--]);
|
|
} else {
|
|
//end (ie lhs) of child context
|
|
childState = NULL;
|
|
--wi;
|
|
}
|
|
}
|
|
}
|
|
reverse(vertexState.rightContext.begin(), vertexState.rightContext.end());
|
|
|
|
//length + counts
|
|
vertexState.targetLength = GetTargetLength(winnerEdge);
|
|
vertexState.bleuStats = bleuStats;
|
|
}
|
|
|
|
|
|
typedef pair<const Edge*,FeatureStatsType> BackPointer;
|
|
|
|
|
|
/**
|
|
* Recurse through back pointers
|
|
**/
|
|
static void GetBestHypothesis(size_t vertexId, const Graph& graph, const vector<BackPointer>& bps,
|
|
HgHypothesis* bestHypo)
|
|
{
|
|
//cerr << "Expanding " << vertexId << " Score: " << bps[vertexId].second << endl;
|
|
//UTIL_THROW_IF(bps[vertexId].second == kMinScore+1, HypergraphException, "Landed at vertex " << vertexId << " which is a dead end");
|
|
if (!bps[vertexId].first) return;
|
|
const Edge* prevEdge = bps[vertexId].first;
|
|
bestHypo->featureVector += *(prevEdge->Features().get());
|
|
size_t childId = 0;
|
|
for (size_t i = 0; i < prevEdge->Words().size(); ++i) {
|
|
if (prevEdge->Words()[i] != NULL) {
|
|
bestHypo->text.push_back(prevEdge->Words()[i]);
|
|
} else {
|
|
size_t childVertexId = prevEdge->Children()[childId++];
|
|
HgHypothesis childHypo;
|
|
GetBestHypothesis(childVertexId,graph,bps,&childHypo);
|
|
bestHypo->text.insert(bestHypo->text.end(), childHypo.text.begin(), childHypo.text.end());
|
|
bestHypo->featureVector += childHypo.featureVector;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Viterbi(const Graph& graph, const SparseVector& weights, float bleuWeight, const ReferenceSet& references , size_t sentenceId, const std::vector<FeatureStatsType>& backgroundBleu, HgHypothesis* bestHypo)
|
|
{
|
|
BackPointer init(NULL,kMinScore);
|
|
vector<BackPointer> backPointers(graph.VertexSize(),init);
|
|
HgBleuScorer bleuScorer(references, graph, sentenceId, backgroundBleu);
|
|
vector<FeatureStatsType> winnerStats(kBleuNgramOrder*2+1);
|
|
for (size_t vi = 0; vi < graph.VertexSize(); ++vi) {
|
|
// cerr << "vertex id " << vi << endl;
|
|
FeatureStatsType winnerScore = kMinScore;
|
|
const Vertex& vertex = graph.GetVertex(vi);
|
|
const vector<const Edge*>& incoming = vertex.GetIncoming();
|
|
if (!incoming.size()) {
|
|
//UTIL_THROW(HypergraphException, "Vertex " << vi << " has no incoming edges");
|
|
//If no incoming edges, vertex is a dead end
|
|
backPointers[vi].first = NULL;
|
|
backPointers[vi].second = kMinScore;
|
|
} else {
|
|
//cerr << "\nVertex: " << vi << endl;
|
|
for (size_t ei = 0; ei < incoming.size(); ++ei) {
|
|
//cerr << "edge id " << ei << endl;
|
|
FeatureStatsType incomingScore = incoming[ei]->GetScore(weights);
|
|
for (size_t i = 0; i < incoming[ei]->Children().size(); ++i) {
|
|
size_t childId = incoming[ei]->Children()[i];
|
|
//UTIL_THROW_IF(backPointers[childId].second == kMinScore,
|
|
// HypergraphException, "Graph was not topologically sorted. curr=" << vi << " prev=" << childId);
|
|
incomingScore = max(incomingScore + backPointers[childId].second, kMinScore);
|
|
}
|
|
vector<FeatureStatsType> bleuStats(kBleuNgramOrder*2+1);
|
|
// cerr << "Score: " << incomingScore << " Bleu: ";
|
|
// if (incomingScore > nonbleuscore) {nonbleuscore = incomingScore; nonbleuid = ei;}
|
|
FeatureStatsType totalScore = incomingScore;
|
|
if (bleuWeight) {
|
|
FeatureStatsType bleuScore = bleuScorer.Score(*(incoming[ei]), vertex, bleuStats);
|
|
if (isnan(bleuScore)) {
|
|
cerr << "WARN: bleu score undefined" << endl;
|
|
cerr << "\tVertex id : " << vi << endl;
|
|
cerr << "\tBleu stats : ";
|
|
for (size_t i = 0; i < bleuStats.size(); ++i) {
|
|
cerr << bleuStats[i] << ",";
|
|
}
|
|
cerr << endl;
|
|
bleuScore = 0;
|
|
}
|
|
//UTIL_THROW_IF(isnan(bleuScore), util::Exception, "Bleu score undefined, smoothing problem?");
|
|
totalScore += bleuWeight * bleuScore;
|
|
// cerr << bleuScore << " Total: " << incomingScore << endl << endl;
|
|
//cerr << "is " << incomingScore << " bs " << bleuScore << endl;
|
|
}
|
|
if (totalScore >= winnerScore) {
|
|
//We only store the feature score (not the bleu score) with the vertex,
|
|
//since the bleu score is always cumulative, ie from counts for the whole span.
|
|
winnerScore = totalScore;
|
|
backPointers[vi].first = incoming[ei];
|
|
backPointers[vi].second = incomingScore;
|
|
winnerStats = bleuStats;
|
|
}
|
|
}
|
|
//update with winner
|
|
//if (bleuWeight) {
|
|
//TODO: Not sure if we need this when computing max-model solution
|
|
if (backPointers[vi].first) {
|
|
bleuScorer.UpdateState(*(backPointers[vi].first), vi, winnerStats);
|
|
}
|
|
|
|
}
|
|
// cerr << "backpointer[" << vi << "] = (" << backPointers[vi].first << "," << backPointers[vi].second << ")" << endl;
|
|
}
|
|
|
|
//expand back pointers
|
|
GetBestHypothesis(graph.VertexSize()-1, graph, backPointers, bestHypo);
|
|
|
|
//bleu stats and fv
|
|
|
|
//Need the actual (clipped) stats
|
|
//TODO: This repeats code in bleu scorer - factor out
|
|
bestHypo->bleuStats.resize(kBleuNgramOrder*2+1);
|
|
NgramCounter counts;
|
|
list<WordVec> openNgrams;
|
|
for (size_t i = 0; i < bestHypo->text.size(); ++i) {
|
|
const Vocab::Entry* entry = bestHypo->text[i];
|
|
if (graph.IsBoundary(entry)) continue;
|
|
openNgrams.push_front(WordVec());
|
|
for (list<WordVec>::iterator k = openNgrams.begin(); k != openNgrams.end(); ++k) {
|
|
k->push_back(entry);
|
|
++counts[*k];
|
|
}
|
|
if (openNgrams.size() >= kBleuNgramOrder) openNgrams.pop_back();
|
|
}
|
|
for (NgramCounter::const_iterator ngi = counts.begin(); ngi != counts.end(); ++ngi) {
|
|
size_t order = ngi->first.size();
|
|
size_t count = ngi->second;
|
|
bestHypo->bleuStats[(order-1)*2 + 1] += count;
|
|
bestHypo->bleuStats[(order-1) * 2] += min(count, references.NgramMatches(sentenceId,ngi->first,true));
|
|
}
|
|
bestHypo->bleuStats[kBleuNgramOrder*2] = references.Length(sentenceId);
|
|
}
|
|
|
|
|
|
};
|