mosesdecoder/moses/HypothesisStackNormal.cpp

292 lines
8.7 KiB
C++

// $Id$
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <algorithm>
#include <set>
#include <queue>
#include "HypothesisStackNormal.h"
#include "TypeDef.h"
#include "Util.h"
#include "StaticData.h"
#include "Manager.h"
#include "util/exception.hh"
using namespace std;
namespace Moses
{
HypothesisStackNormal::HypothesisStackNormal(Manager& manager) :
HypothesisStack(manager)
{
m_nBestIsEnabled = manager.options().nbest.enabled;
m_bestScore = -std::numeric_limits<float>::infinity();
m_worstScore = -std::numeric_limits<float>::infinity();
}
/** remove all hypotheses from the collection */
void HypothesisStackNormal::RemoveAll()
{
while (m_hypos.begin() != m_hypos.end()) {
Remove(m_hypos.begin());
}
}
pair<HypothesisStackNormal::iterator, bool> HypothesisStackNormal::Add(Hypothesis *hypo)
{
std::pair<iterator, bool> ret = m_hypos.insert(hypo);
if (ret.second) {
// equiv hypo doesn't exists
VERBOSE(3,"added hyp to stack");
// Update best score, if this hypothesis is new best
if (hypo->GetFutureScore() > m_bestScore) {
VERBOSE(3,", best on stack");
m_bestScore = hypo->GetFutureScore();
// this may also affect the worst score
if ( m_bestScore + m_beamWidth > m_worstScore )
m_worstScore = m_bestScore + m_beamWidth;
}
// update best/worst score for stack diversity 1
if ( m_minHypoStackDiversity == 1 &&
hypo->GetFutureScore() > GetWorstScoreForBitmap( hypo->GetWordsBitmap() ) ) {
SetWorstScoreForBitmap( hypo->GetWordsBitmap().GetID(), hypo->GetFutureScore() );
}
VERBOSE(3,", now size " << m_hypos.size());
// prune only if stack is twice as big as needed (lazy pruning)
size_t toleratedSize = 2*m_maxHypoStackSize-1;
// add in room for stack diversity
if (m_minHypoStackDiversity)
toleratedSize += m_minHypoStackDiversity << StaticData::Instance().GetMaxDistortion();
if (m_hypos.size() > toleratedSize) {
PruneToSize(m_maxHypoStackSize);
} else {
VERBOSE(3,std::endl);
}
}
return ret;
}
bool HypothesisStackNormal::AddPrune(Hypothesis *hypo)
{
if (hypo->GetFutureScore() == - std::numeric_limits<float>::infinity()) {
m_manager.GetSentenceStats().AddDiscarded();
VERBOSE(3,"discarded, constraint" << std::endl);
delete hypo;
return false;
}
// too bad for stack. don't bother adding hypo into collection
if (!StaticData::Instance().GetDisableDiscarding() &&
hypo->GetFutureScore() < m_worstScore
&& ! ( m_minHypoStackDiversity > 0
&& hypo->GetFutureScore() >= GetWorstScoreForBitmap( hypo->GetWordsBitmap() ) ) ) {
m_manager.GetSentenceStats().AddDiscarded();
VERBOSE(3,"discarded, too bad for stack" << std::endl);
delete hypo;
return false;
}
// over threshold, try to add to collection
std::pair<iterator, bool> addRet = Add(hypo);
if (addRet.second) {
// nothing found. add to collection
return true;
}
// equiv hypo exists, recombine with other hypo
iterator &iterExisting = addRet.first;
Hypothesis *hypoExisting = *iterExisting;
assert(iterExisting != m_hypos.end());
m_manager.GetSentenceStats().AddRecombination(*hypo, **iterExisting);
// found existing hypo with same target ending.
// keep the best 1
if (hypo->GetFutureScore() > hypoExisting->GetFutureScore()) {
// incoming hypo is better than the one we have
VERBOSE(3,"better than matching hyp " << hypoExisting->GetId() << ", recombining, ");
if (m_nBestIsEnabled) {
hypo->AddArc(hypoExisting);
Detach(iterExisting);
} else {
Remove(iterExisting);
}
bool added = Add(hypo).second;
if (!added) {
iterExisting = m_hypos.find(hypo);
UTIL_THROW2("Offending hypo = " << **iterExisting);
}
return false;
} else {
// already storing the best hypo. discard current hypo
VERBOSE(3,"worse than matching hyp " << hypoExisting->GetId() << ", recombining" << std::endl)
if (m_nBestIsEnabled) {
hypoExisting->AddArc(hypo);
} else {
delete hypo;
}
return false;
}
}
void HypothesisStackNormal::PruneToSize(size_t newSize)
{
if ( newSize == 0) return; // no limit
if ( size() <= newSize ) return; // ok, if not over the limit
// we need to store a temporary list of hypotheses
vector< Hypothesis* > hypos = GetSortedListNOTCONST();
bool* included = (bool*) malloc(sizeof(bool) * hypos.size());
for(size_t i=0; i<hypos.size(); i++) included[i] = false;
// clear out original set
for( iterator iter = m_hypos.begin(); iter != m_hypos.end(); ) {
iterator removeHyp = iter++;
Detach(removeHyp);
}
// add best hyps for each coverage according to minStackDiversity
if ( m_minHypoStackDiversity > 0 ) {
map< WordsBitmapID, size_t > diversityCount;
for(size_t i=0; i<hypos.size(); i++) {
Hypothesis *hyp = hypos[i];
WordsBitmapID coverage = hyp->GetWordsBitmap().GetID();;
if (diversityCount.find( coverage ) == diversityCount.end())
diversityCount[ coverage ] = 0;
if (diversityCount[ coverage ] < m_minHypoStackDiversity) {
m_hypos.insert( hyp );
included[i] = true;
diversityCount[ coverage ]++;
if (diversityCount[ coverage ] == m_minHypoStackDiversity)
SetWorstScoreForBitmap( coverage, hyp->GetFutureScore());
}
}
}
// only add more if stack not full after satisfying minStackDiversity
if ( size() < newSize ) {
// add best remaining hypotheses
for(size_t i=0; i<hypos.size()
&& size() < newSize
&& hypos[i]->GetFutureScore() > m_bestScore+m_beamWidth; i++) {
if (! included[i]) {
m_hypos.insert( hypos[i] );
included[i] = true;
if (size() == newSize)
m_worstScore = hypos[i]->GetFutureScore();
}
}
}
// delete hypotheses that have not been included
for(size_t i=0; i<hypos.size(); i++) {
if (! included[i]) {
delete hypos[i];
m_manager.GetSentenceStats().AddPruning();
}
}
free(included);
// some reporting....
VERBOSE(3,", pruned to size " << size() << endl);
IFVERBOSE(3) {
TRACE_ERR("stack now contains: ");
for(iterator iter = m_hypos.begin(); iter != m_hypos.end(); iter++) {
Hypothesis *hypo = *iter;
TRACE_ERR( hypo->GetId() << " (" << hypo->GetFutureScore() << ") ");
}
TRACE_ERR( endl);
}
}
const Hypothesis *HypothesisStackNormal::GetBestHypothesis() const
{
if (!m_hypos.empty()) {
const_iterator iter = m_hypos.begin();
Hypothesis *bestHypo = *iter;
while (++iter != m_hypos.end()) {
Hypothesis *hypo = *iter;
if (hypo->GetFutureScore() > bestHypo->GetFutureScore())
bestHypo = hypo;
}
return bestHypo;
}
return NULL;
}
vector<const Hypothesis*> HypothesisStackNormal::GetSortedList() const
{
vector<const Hypothesis*> ret;
ret.reserve(m_hypos.size());
std::copy(m_hypos.begin(), m_hypos.end(), std::inserter(ret, ret.end()));
sort(ret.begin(), ret.end(), CompareHypothesisTotalScore());
return ret;
}
vector<Hypothesis*> HypothesisStackNormal::GetSortedListNOTCONST()
{
vector<Hypothesis*> ret;
ret.reserve(m_hypos.size());
std::copy(m_hypos.begin(), m_hypos.end(), std::inserter(ret, ret.end()));
sort(ret.begin(), ret.end(), CompareHypothesisTotalScore());
return ret;
}
void HypothesisStackNormal::CleanupArcList()
{
// only necessary if n-best calculations are enabled
if (!m_nBestIsEnabled) return;
iterator iter;
for (iter = m_hypos.begin() ; iter != m_hypos.end() ; ++iter) {
Hypothesis *mainHypo = *iter;
mainHypo->CleanupArcList();
}
}
TO_STRING_BODY(HypothesisStackNormal);
// friend
std::ostream& operator<<(std::ostream& out, const HypothesisStackNormal& hypoColl)
{
HypothesisStackNormal::const_iterator iter;
for (iter = hypoColl.begin() ; iter != hypoColl.end() ; ++iter) {
const Hypothesis &hypo = **iter;
out << hypo << endl;
}
return out;
}
}