mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-26 21:42:19 +03:00
154 lines
4.9 KiB
C++
154 lines
4.9 KiB
C++
/***********************************************************************
|
|
Moses - factored phrase-based language decoder
|
|
Copyright (C) 2010 University of Edinburgh
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
***********************************************************************/
|
|
#ifndef _MIRA_OPTIMISER_H_
|
|
#define _MIRA_OPTIMISER_H_
|
|
|
|
#include <vector>
|
|
|
|
#include "moses/ScoreComponentCollection.h"
|
|
|
|
|
|
namespace Mira
|
|
{
|
|
|
|
class Optimiser
|
|
{
|
|
public:
|
|
Optimiser() {}
|
|
|
|
virtual size_t updateWeightsHopeFear(
|
|
Moses::ScoreComponentCollection& weightUpdate,
|
|
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValuesHope,
|
|
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValuesFear,
|
|
const std::vector<std::vector<float> >& bleuScoresHope,
|
|
const std::vector<std::vector<float> >& bleuScoresFear,
|
|
const std::vector<std::vector<float> >& modelScoresHope,
|
|
const std::vector<std::vector<float> >& modelScoresFear,
|
|
float learning_rate,
|
|
size_t rank,
|
|
size_t epoch,
|
|
int updatePosition = -1) = 0;
|
|
};
|
|
|
|
class Perceptron : public Optimiser
|
|
{
|
|
public:
|
|
virtual size_t updateWeightsHopeFear(
|
|
Moses::ScoreComponentCollection& weightUpdate,
|
|
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValuesHope,
|
|
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValuesFear,
|
|
const std::vector<std::vector<float> >& bleuScoresHope,
|
|
const std::vector<std::vector<float> >& bleuScoresFear,
|
|
const std::vector<std::vector<float> >& modelScoresHope,
|
|
const std::vector<std::vector<float> >& modelScoresFear,
|
|
float learning_rate,
|
|
size_t rank,
|
|
size_t epoch,
|
|
int updatePosition = -1);
|
|
};
|
|
|
|
class MiraOptimiser : public Optimiser
|
|
{
|
|
public:
|
|
MiraOptimiser() :
|
|
Optimiser() { }
|
|
|
|
MiraOptimiser(float slack) :
|
|
Optimiser(),
|
|
m_slack(slack),
|
|
m_scale_margin(false),
|
|
m_scale_update(false),
|
|
m_boost(false),
|
|
m_normaliseMargin(false),
|
|
m_sigmoidParam(1.0) { }
|
|
|
|
MiraOptimiser(float slack, bool scale_margin, bool scale_update,
|
|
bool boost, bool normaliseMargin, float sigmoidParam) :
|
|
Optimiser(),
|
|
m_slack(slack),
|
|
m_scale_margin(scale_margin),
|
|
m_scale_update(scale_update),
|
|
m_boost(boost),
|
|
m_normaliseMargin(normaliseMargin),
|
|
m_sigmoidParam(sigmoidParam) { }
|
|
|
|
size_t updateWeights(
|
|
Moses::ScoreComponentCollection& weightUpdate,
|
|
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValues,
|
|
const std::vector<std::vector<float> >& losses,
|
|
const std::vector<std::vector<float> >& bleuScores,
|
|
const std::vector<std::vector<float> >& modelScores,
|
|
const std::vector< Moses::ScoreComponentCollection>& oracleFeatureValues,
|
|
const std::vector< float> oracleBleuScores,
|
|
const std::vector< float> oracleModelScores,
|
|
float learning_rate,
|
|
size_t rank,
|
|
size_t epoch);
|
|
virtual size_t updateWeightsHopeFear(
|
|
Moses::ScoreComponentCollection& weightUpdate,
|
|
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValuesHope,
|
|
const std::vector<std::vector<Moses::ScoreComponentCollection> >& featureValuesFear,
|
|
const std::vector<std::vector<float> >& bleuScoresHope,
|
|
const std::vector<std::vector<float> >& bleuScoresFear,
|
|
const std::vector<std::vector<float> >& modelScoresHope,
|
|
const std::vector<std::vector<float> >& modelScoresFear,
|
|
float learning_rate,
|
|
size_t rank,
|
|
size_t epoch,
|
|
int updatePosition = -1);
|
|
size_t updateWeightsAnalytically(
|
|
Moses::ScoreComponentCollection& weightUpdate,
|
|
Moses::ScoreComponentCollection& featureValuesHope,
|
|
Moses::ScoreComponentCollection& featureValuesFear,
|
|
float bleuScoreHope,
|
|
float bleuScoreFear,
|
|
float modelScoreHope,
|
|
float modelScoreFear,
|
|
float learning_rate,
|
|
size_t rank,
|
|
size_t epoch);
|
|
|
|
void setSlack(float slack) {
|
|
m_slack = slack;
|
|
}
|
|
|
|
private:
|
|
// regularise Hildreth updates
|
|
float m_slack;
|
|
|
|
|
|
// scale margin with BLEU score
|
|
bool m_scale_margin;
|
|
|
|
// scale update with oracle BLEU score
|
|
bool m_scale_update;
|
|
|
|
// boosting of updates on misranked candidates
|
|
bool m_boost;
|
|
|
|
// squash margin between 0 and 1 (or depending on m_sigmoidParam)
|
|
bool m_normaliseMargin;
|
|
|
|
// y=sigmoidParam is the axis that this sigmoid approaches
|
|
float m_sigmoidParam ;
|
|
};
|
|
}
|
|
|
|
#endif
|