mosesdecoder/moses/FeatureVector.h
2015-09-25 17:20:09 -04:00

389 lines
10 KiB
C++

/*
Moses - statistical machine translation system
Copyright (C) 2005-2015 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#pragma once
#ifndef FEATUREVECTOR_H
#define FEATUREVECTOR_H
#include <iostream>
#include <map>
#include <sstream>
#include <string>
#include <valarray>
#include <vector>
#include <boost/functional/hash.hpp>
#include <boost/unordered_map.hpp>
#ifdef MPI_ENABLE
#include <boost/serialization/access.hpp>
#include <boost/serialization/split_member.hpp>
#include <boost/serialization/string.hpp>
#include <boost/serialization/vector.hpp>
#include <boost/serialization/valarray.hpp>
#endif
#ifdef WITH_THREADS
#include <boost/thread/shared_mutex.hpp>
#endif
#include "util/exception.hh"
#include "util/string_piece.hh"
namespace Moses
{
typedef float FValue;
/**
* Feature name
**/
struct FName {
static const std::string SEP;
typedef boost::unordered_map<std::string,size_t> Name2Id;
typedef boost::unordered_map<size_t,size_t> Id2Count;
//typedef std::map<std::string, size_t> Name2Id;
static Name2Id name2id;
static std::vector<std::string> id2name;
static Id2Count id2hopeCount;
static Id2Count id2fearCount;
//A feature name can either be initialised as a pair of strings,
//which will be concatenated with a SEP between them, or as
//a single string, which will be used as-is.
FName(const StringPiece &root, const StringPiece &name) {
std::string assembled(root.data(), root.size());
assembled += SEP;
assembled.append(name.data(), name.size());
init(assembled);
}
explicit FName(const StringPiece &name) {
init(name);
}
const std::string& name() const;
//const std::string& root() const {return m_root;}
size_t hash() const;
bool operator==(const FName& rhs) const ;
bool operator!=(const FName& rhs) const ;
static size_t getId(const std::string& name);
static size_t getHopeIdCount(const std::string& name);
static size_t getFearIdCount(const std::string& name);
static void incrementHopeId(const std::string& name);
static void incrementFearId(const std::string& name);
static void eraseId(size_t id);
private:
void init(const StringPiece& name);
size_t m_id;
#ifdef WITH_THREADS
//reader-writer lock
static boost::shared_mutex m_idLock;
#endif
};
std::ostream& operator<<(std::ostream& out,const FName& name);
struct FNameEquals {
inline bool operator() (const FName& lhs, const FName& rhs) const {
return (lhs == rhs);
}
};
struct FNameHash
: std::unary_function<FName, std::size_t> {
std::size_t operator()(const FName& x) const {
return x.hash();
}
};
class ProxyFVector;
/**
* A sparse feature (or weight) vector.
**/
class FVector
{
public:
/** Empty feature vector */
FVector(size_t coreFeatures = 0);
FVector& operator=( const FVector& rhs ) {
m_features = rhs.m_features;
m_coreFeatures = rhs.m_coreFeatures;
return *this;
}
/*
* Change the number of core features
**/
void resize(size_t newsize);
typedef boost::unordered_map<FName,FValue,FNameHash, FNameEquals> FNVmap;
/** Iterators */
typedef FNVmap::iterator iterator;
typedef FNVmap::const_iterator const_iterator;
iterator begin() {
return m_features.begin();
}
iterator end() {
return m_features.end();
}
const_iterator cbegin() const {
return m_features.cbegin();
}
const_iterator cend() const {
return m_features.cend();
}
bool hasNonDefaultValue(FName name) const {
return m_features.find(name) != m_features.end();
}
void clear();
/** Load from file - each line should be 'root[_name] value' */
bool load(const std::string& filename);
void save(const std::string& filename) const;
void write(std::ostream& out, const std::string& sep=" ", const std::string& linesep="\n") const ;
/** Element access */
ProxyFVector operator[](const FName& name);
FValue& operator[](size_t index);
FValue operator[](const FName& name) const;
FValue operator[](size_t index) const;
/** Size */
size_t size() const {
return m_features.size() + m_coreFeatures.size();
}
size_t coreSize() const {
return m_coreFeatures.size();
}
const std::valarray<FValue> &getCoreFeatures() const {
return m_coreFeatures;
}
/** Equality */
bool operator== (const FVector& rhs) const;
bool operator!= (const FVector& rhs) const;
FValue inner_product(const FVector& rhs) const;
friend class ProxyFVector;
/**arithmetic */
//Element-wise
//If one side has fewer core features, take the missing ones to be 0.
FVector& operator+= (const FVector& rhs);
FVector& operator-= (const FVector& rhs);
FVector& operator*= (const FVector& rhs);
FVector& operator/= (const FVector& rhs);
//Scalar
FVector& operator*= (const FValue& rhs);
FVector& operator/= (const FValue& rhs);
FVector& multiplyEqualsBackoff(const FVector& rhs, float backoff);
FVector& multiplyEquals(float core_r0, float sparse_r0);
FVector& max_equals(const FVector& rhs);
/** norms and sums */
FValue l1norm() const;
FValue l1norm_coreFeatures() const;
FValue l2norm() const;
FValue linfnorm() const;
size_t l1regularize(float lambda);
void l2regularize(float lambda);
size_t sparseL1regularize(float lambda);
void sparseL2regularize(float lambda);
FValue sum() const;
/** pretty printing */
std::ostream& print(std::ostream& out) const;
/** additional */
void printCoreFeatures();
//scale so that abs. value is less than maxvalue
void thresholdScale(float maxValue );
void capMax(FValue maxValue);
void capMin(FValue minValue);
void sparsePlusEquals(const FVector& rhs);
void corePlusEquals(const FVector& rhs);
void coreAssign(const FVector& rhs);
void incrementSparseHopeFeatures();
void incrementSparseFearFeatures();
void printSparseHopeFeatureCounts(std::ofstream& out);
void printSparseFearFeatureCounts(std::ofstream& out);
void printSparseHopeFeatureCounts();
void printSparseFearFeatureCounts();
size_t pruneSparseFeatures(size_t threshold);
size_t pruneZeroWeightFeatures();
void updateConfidenceCounts(const FVector& weightUpdate, bool signedCounts);
void updateLearningRates(float decay_core, float decay_sparse, const FVector& confidence_counts, float core_r0, float sparse_r0);
// vector which, for each element of the original vector, reflects whether an element is zero or non-zero
void setToBinaryOf(const FVector& rhs);
// divide only core features by scalar
FVector& coreDivideEquals(float scalar);
// divide each element by the number given in the rhs vector
FVector& divideEquals(const FVector& rhs);
void merge(const FVector &other);
#ifdef MPI_ENABLE
friend class boost::serialization::access;
#endif
private:
friend void swap(FVector &first, FVector &second);
/** Internal get and set. */
const FValue& get(const FName& name) const;
FValue getBackoff(const FName& name, float backoff) const;
void set(const FName& name, const FValue& value);
FNVmap m_features;
std::valarray<FValue> m_coreFeatures;
#ifdef MPI_ENABLE
//serialization
template<class Archive>
void save(Archive &ar, const unsigned int version) const {
std::vector<std::string> names;
std::vector<FValue> values;
for (const_iterator i = cbegin(); i != cend(); ++i) {
std::ostringstream ostr;
ostr << i->first;
names.push_back(ostr.str());
values.push_back(i->second);
}
ar << names;
ar << values;
ar << m_coreFeatures;
}
template<class Archive>
void load(Archive &ar, const unsigned int version) {
clear();
std::vector<std::string> names;
std::vector<FValue> values;
ar >> names;
ar >> values;
ar >> m_coreFeatures;
UTIL_THROW_IF2(names.size() != values.size(), "Error");
for (size_t i = 0; i < names.size(); ++i) {
set(FName(names[i]), values[i]);
}
}
BOOST_SERIALIZATION_SPLIT_MEMBER()
#endif
};
inline void swap(FVector &first, FVector &second)
{
swap(first.m_features, second.m_features);
swap(first.m_coreFeatures, second.m_coreFeatures);
}
std::ostream& operator<<( std::ostream& out, const FVector& fv);
//Element-wise operations
const FVector operator+(const FVector& lhs, const FVector& rhs);
const FVector operator-(const FVector& lhs, const FVector& rhs);
const FVector operator*(const FVector& lhs, const FVector& rhs);
const FVector operator/(const FVector& lhs, const FVector& rhs);
//Scalar operations
const FVector operator*(const FVector& lhs, const FValue& rhs);
const FVector operator/(const FVector& lhs, const FValue& rhs);
const FVector fvmax(const FVector& lhs, const FVector& rhs);
FValue inner_product(const FVector& lhs, const FVector& rhs);
struct FVectorPlus {
FVector operator()(const FVector& lhs, const FVector& rhs) const {
return lhs + rhs;
}
};
/**
* Used to help with subscript operator overloading.
* See http://stackoverflow.com/questions/1386075/overloading-operator-for-a-sparse-vector
**/
class ProxyFVector
{
public:
ProxyFVector(FVector *fv, const FName& name ) : m_fv(fv), m_name(name) {}
ProxyFVector &operator=(const FValue& value) {
// If we get here, we know that operator[] was called to perform a write access,
// so we can insert an item in the vector if needed
//std::cerr << "Inserting " << value << " into " << m_name << std::endl;
m_fv->set(m_name,value);
return *this;
}
operator FValue() {
// If we get here, we know that operator[] was called to perform a read access,
// so we can simply return the value from the vector
return m_fv->get(m_name);
}
/*operator FValue&() {
return m_fv->m_features[m_name];
}*/
FValue operator++() {
return ++m_fv->m_features[m_name];
}
FValue operator +=(FValue lhs) {
return (m_fv->m_features[m_name] += lhs);
}
FValue operator -=(FValue lhs) {
return (m_fv->m_features[m_name] -= lhs);
}
private:
FVector* m_fv;
const FName& m_name;
};
}
#endif