mosesdecoder/moses/LM/IRST.cpp

446 lines
14 KiB
C++

// $Id$
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <limits>
#include <iostream>
#include <fstream>
#include "dictionary.h"
#include "n_gram.h"
#include "lmContainer.h"
using namespace irstlm;
#include "IRST.h"
#include "moses/LM/PointerState.h"
#include "moses/TypeDef.h"
#include "moses/Util.h"
#include "moses/FactorCollection.h"
#include "moses/Phrase.h"
#include "moses/InputFileStream.h"
#include "moses/StaticData.h"
#include "moses/TranslationTask.h"
using namespace std;
namespace Moses
{
class IRSTLMState : public PointerState
{
public:
IRSTLMState():PointerState(NULL) {}
IRSTLMState(const void* lms):PointerState(lms) {}
IRSTLMState(const IRSTLMState& copy_from):PointerState(copy_from.lmstate) {}
IRSTLMState& operator=( const IRSTLMState& rhs ) {
lmstate = rhs.lmstate;
return *this;
}
const void* GetState() const {
return lmstate;
}
};
LanguageModelIRST::LanguageModelIRST(const std::string &line)
:LanguageModelSingleFactor(line)
,m_lmtb_dub(0), m_lmtb_size(0)
{
const StaticData &staticData = StaticData::Instance();
int threadCount = staticData.ThreadCount();
if (threadCount != 1) {
throw runtime_error("Error: " + SPrint(threadCount) + " number of threads specified but IRST LM is not threadsafe.");
}
ReadParameters();
VERBOSE(4, GetScoreProducerDescription() << " LanguageModelIRST::LanguageModelIRST() m_lmtb_dub:|" << m_lmtb_dub << "|" << std::endl);
VERBOSE(4, GetScoreProducerDescription() << " LanguageModelIRST::LanguageModelIRST() m_filePath:|" << m_filePath << "|" << std::endl);
VERBOSE(4, GetScoreProducerDescription() << " LanguageModelIRST::LanguageModelIRST() m_factorType:|" << m_factorType << "|" << std::endl);
VERBOSE(4, GetScoreProducerDescription() << " LanguageModelIRST::LanguageModelIRST() m_lmtb_size:|" << m_lmtb_size << "|" << std::endl);
}
LanguageModelIRST::~LanguageModelIRST()
{
#ifndef WIN32
TRACE_ERR( "reset mmap\n");
if (m_lmtb) m_lmtb->reset_mmap();
#endif
delete m_lmtb;
}
bool LanguageModelIRST::IsUseable(const FactorMask &mask) const
{
bool ret = mask[m_factorType];
return ret;
}
void LanguageModelIRST::Load()
{
FactorCollection &factorCollection = FactorCollection::Instance();
m_lmtb = m_lmtb->CreateLanguageModel(m_filePath);
if (m_lmtb_size > 0) m_lmtb->setMaxLoadedLevel(m_lmtb_size);
m_lmtb->load(m_filePath);
d=m_lmtb->getDict();
d->incflag(1);
m_nGramOrder = m_lmtb_size = m_lmtb->maxlevel();
// LM can be ok, just outputs warnings
// Mauro: in the original, the following two instructions are wrongly switched:
m_unknownId = d->oovcode(); // at the level of micro tags
m_empty = -1; // code for an empty position
CreateFactors(factorCollection);
VERBOSE(1, GetScoreProducerDescription() << " LanguageModelIRST::Load() m_unknownId=" << m_unknownId << std::endl);
//install caches to save time (only if PS_CACHE_ENABLE is defined through compilation flags)
m_lmtb->init_caches(m_lmtb_size>2?m_lmtb_size-1:2);
if (m_lmtb_dub > 0) m_lmtb->setlogOOVpenalty(m_lmtb_dub);
}
void LanguageModelIRST::CreateFactors(FactorCollection &factorCollection)
{
// add factors which have srilm id
// code copied & paste from SRI LM class. should do template function
std::map<size_t, int> lmIdMap;
size_t maxFactorId = 0; // to create lookup vector later on
m_empty = -1; // code for an empty position
dict_entry *entry;
dictionary_iter iter(d); // at the level of micro tags
while ( (entry = iter.next()) != NULL) {
size_t factorId = factorCollection.AddFactor(Output, m_factorType, entry->word)->GetId();
lmIdMap[factorId] = entry->code;
maxFactorId = (factorId > maxFactorId) ? factorId : maxFactorId;
}
size_t factorId;
m_sentenceStart = factorCollection.AddFactor(Output, m_factorType, BOS_);
factorId = m_sentenceStart->GetId();
const std::string bs = BOS_;
const std::string es = EOS_;
m_lmtb_sentenceStart=lmIdMap[factorId] = GetLmID(BOS_);
maxFactorId = (factorId > maxFactorId) ? factorId : maxFactorId;
m_sentenceStartWord[m_factorType] = m_sentenceStart;
m_sentenceEnd = factorCollection.AddFactor(Output, m_factorType, EOS_);
factorId = m_sentenceEnd->GetId();
m_lmtb_sentenceEnd=lmIdMap[factorId] = GetLmID(EOS_);
maxFactorId = (factorId > maxFactorId) ? factorId : maxFactorId;
m_sentenceEndWord[m_factorType] = m_sentenceEnd;
// add to lookup vector in object
m_lmIdLookup.resize(maxFactorId+1);
fill(m_lmIdLookup.begin(), m_lmIdLookup.end(), m_empty);
map<size_t, int>::iterator iterMap;
for (iterMap = lmIdMap.begin() ; iterMap != lmIdMap.end() ; ++iterMap) {
m_lmIdLookup[iterMap->first] = iterMap->second;
}
}
int LanguageModelIRST::GetLmID( const std::string &str ) const
{
return d->encode( str.c_str() ); // at the level of micro tags
}
int LanguageModelIRST::GetLmID( const Word &word ) const
{
return GetLmID( word.GetFactor(m_factorType) );
}
int LanguageModelIRST::GetLmID( const Factor *factor ) const
{
size_t factorId = factor->GetId();
if ((factorId >= m_lmIdLookup.size()) || (m_lmIdLookup[factorId] == m_empty)) {
if (d->incflag()==1) {
std::string s = factor->GetString().as_string();
int code = d->encode(s.c_str());
//////////
///poiche' non c'e' distinzione tra i factorIDs delle parole sorgenti
///e delle parole target in Moses, puo' accadere che una parola target
///di cui non sia stato ancora calcolato il suo codice target abbia
///comunque un factorID noto (e quindi minore di m_lmIdLookup.size())
///E' necessario dunque identificare questi casi di indeterminatezza
///del codice target. Attualmente, questo controllo e' stato implementato
///impostando a m_empty tutti i termini che non hanno ancora
//ricevuto un codice target effettivo
///////////
///OLD PROBLEM - SOLVED
////////////
/// IL PPROBLEMA ERA QUI
/// m_lmIdLookup.push_back(code);
/// PERCHE' USANDO PUSH_BACK IN REALTA' INSEREVIVAMO L'ELEMENTO NUOVO
/// IN POSIZIONE (factorID-1) invece che in posizione factrID dove dopo andiamo a leggerlo (vedi caso C
/// Cosi' funziona ....
/// ho un dubbio su cosa c'e' nelle prime posizioni di m_lmIdLookup
/// quindi
/// e scopro che rimane vuota una entry ogni due
/// perche' factorID cresce di due in due (perche' codifica sia source che target) "vuota" la posizione (factorID-1)
/// non da problemi di correttezza, ma solo di "spreco" di memoria
/// potremmo sostituirerendere m_lmIdLookup una std:map invece che un std::vector,
/// ma si perde in efficienza nell'accesso perche' non e' piu' possibile quello random dei vettori
/// a te la scelta!!!!
////////////////
if (factorId >= m_lmIdLookup.size()) {
//resize and fill with m_empty
//increment the array more than needed to avoid too many resizing operation.
m_lmIdLookup.resize(factorId+10, m_empty);
}
//insert new code
m_lmIdLookup[factorId] = code;
return code;
} else {
return m_unknownId;
}
} else {
return m_lmIdLookup[factorId];
}
}
const FFState* LanguageModelIRST::EmptyHypothesisState(const InputType &/*input*/) const
{
std::auto_ptr<IRSTLMState> ret(new IRSTLMState());
return ret.release();
}
void LanguageModelIRST::CalcScoreWithContext(ttasksptr const& ttasks, const Phrase &phrase, float &fullScore, float &ngramScore, size_t &oovCount) const
{
fullScore = 0;
ngramScore = 0;
oovCount = 0;
if ( !phrase.GetSize() ) return;
//get the context_weight map here
std::map<std::string, float> context_weight = ttasks->GetContextWeights();
int _min = min(m_lmtb_size - 1, (int) phrase.GetSize());
int codes[m_lmtb_size];
int idx = 0;
codes[idx] = m_lmtb_sentenceStart;
++idx;
int position = 0;
char* msp = NULL;
float before_boundary = 0.0;
for (; position < _min; ++position) {
codes[idx] = GetLmID(phrase.GetWord(position));
if (codes[idx] == m_unknownId) ++oovCount;
before_boundary += m_lmtb->clprob(codes,idx+1,NULL,NULL,&msp);
++idx;
}
ngramScore = 0.0;
int end_loop = (int) phrase.GetSize();
for (; position < end_loop; ++position) {
for (idx = 1; idx < m_lmtb_size; ++idx) {
codes[idx-1] = codes[idx];
}
codes[idx-1] = GetLmID(phrase.GetWord(position));
if (codes[idx-1] == m_unknownId) ++oovCount;
ngramScore += m_lmtb->clprob(codes,idx,NULL,NULL,&msp);
}
before_boundary = TransformLMScore(before_boundary);
ngramScore = TransformLMScore(ngramScore);
fullScore = ngramScore + before_boundary;
}
FFState* LanguageModelIRST::EvaluateWhenAppliedWithContext(ttasksptr const& ttasks, const Hypothesis &hypo, const FFState *ps, ScoreComponentCollection *out) const
{
if (!hypo.GetCurrTargetLength()) {
std::auto_ptr<IRSTLMState> ret(new IRSTLMState(ps));
return ret.release();
}
//get the context_weight map here
std::map<std::string, float> context_weight = ttasks->GetContextWeights();
//[begin, end) in STL-like fashion.
const int begin = (const int) hypo.GetCurrTargetWordsRange().GetStartPos();
const int end = (const int) hypo.GetCurrTargetWordsRange().GetEndPos() + 1;
const int adjust_end = (const int) std::min(end, begin + m_lmtb_size - 1);
//set up context
//fill the farthest positions with sentenceStart symbols, if "empty" positions are available
//so that the vector looks like = "<s> <s> context_word context_word" for a two-word context and a LM of order 5
int codes[m_lmtb_size];
int idx=m_lmtb_size-1;
int position = (const int) begin;
while (position >= 0) {
codes[idx] = GetLmID(hypo.GetWord(position));
--idx;
--position;
}
while (idx>=0) {
codes[idx] = m_lmtb_sentenceStart;
--idx;
}
char* msp = NULL;
float score = m_lmtb->clprob(codes,m_lmtb_size,NULL,NULL,&msp);
position = (const int) begin+1;
while (position < adjust_end) {
for (idx=1; idx<m_lmtb_size; idx++) {
codes[idx-1] = codes[idx];
}
codes[idx-1] = GetLmID(hypo.GetWord(position));
score += m_lmtb->clprob(codes,m_lmtb_size,NULL,NULL,&msp);
++position;
}
//adding probability of having sentenceEnd symbol, after this phrase;
//this could happen only when all source words are covered
if (hypo.IsSourceCompleted()) {
idx=m_lmtb_size-1;
codes[idx] = m_lmtb_sentenceEnd;
--idx;
position = (const int) end - 1;
while (position >= 0 && idx >= 0) {
codes[idx] = GetLmID(hypo.GetWord(position));
--idx;
--position;
}
while (idx>=0) {
codes[idx] = m_lmtb_sentenceStart;
--idx;
}
score += m_lmtb->clprob(codes,m_lmtb_size,NULL,NULL,&msp);
} else {
// need to set the LM state
if (adjust_end < end) { //the LMstate of this target phrase refers to the last m_lmtb_size-1 words
position = (const int) end - 1;
for (idx=m_lmtb_size-1; idx>0; --idx) {
codes[idx] = GetLmID(hypo.GetWord(position));
}
codes[idx] = m_lmtb_sentenceStart;
msp = (char *) m_lmtb->cmaxsuffptr(codes,m_lmtb_size);
}
}
score = TransformLMScore(score);
out->PlusEquals(this, score);
std::auto_ptr<IRSTLMState> ret(new IRSTLMState(msp));
return ret.release();
}
LMResult LanguageModelIRST::GetValue(const vector<const Word*> &contextFactor, State* finalState) const
{
// set up context
size_t count = contextFactor.size();
if (count < 0) {
cerr << "ERROR count < 0\n";
exit(100);
};
// set up context
int codes[MAX_NGRAM_SIZE];
size_t idx=0;
//fill the farthest positions with at most ONE sentenceEnd symbol and at most ONE sentenceEnd symbol, if "empty" positions are available
//so that the vector looks like = "</s> <s> context_word context_word" for a two-word context and a LM of order 5
if (count < (size_t) (m_lmtb_size-1)) codes[idx++] = m_lmtb_sentenceEnd;
if (count < (size_t) m_lmtb_size) codes[idx++] = m_lmtb_sentenceStart;
for (size_t i = 0 ; i < count ; i++) {
codes[idx] = GetLmID(*contextFactor[i]);
++idx;
}
LMResult result;
result.unknown = (codes[idx - 1] == m_unknownId);
char* msp = NULL;
result.score = m_lmtb->clprob(codes,idx,NULL,NULL,&msp);
if (finalState) *finalState=(State *) msp;
result.score = TransformLMScore(result.score);
return result;
}
bool LMCacheCleanup(const int sentences_done, const size_t m_lmcache_cleanup_threshold)
{
if (sentences_done==-1) return true;
if (m_lmcache_cleanup_threshold)
if (sentences_done % m_lmcache_cleanup_threshold == 0)
return true;
return false;
}
void LanguageModelIRST::InitializeForInput(ttasksptr const& ttask)
{
//nothing to do
#ifdef TRACE_CACHE
m_lmtb->sentence_id++;
#endif
}
void LanguageModelIRST::CleanUpAfterSentenceProcessing(const InputType& source)
{
const StaticData &staticData = StaticData::Instance();
static int sentenceCount = 0;
sentenceCount++;
size_t lmcache_cleanup_threshold = staticData.GetLMCacheCleanupThreshold();
if (LMCacheCleanup(sentenceCount, lmcache_cleanup_threshold)) {
TRACE_ERR( "reset caches\n");
m_lmtb->reset_caches();
}
}
void LanguageModelIRST::SetParameter(const std::string& key, const std::string& value)
{
if (key == "dub") {
m_lmtb_dub = Scan<unsigned int>(value);
} else {
LanguageModelSingleFactor::SetParameter(key, value);
}
m_lmtb_size = m_nGramOrder;
}
}