mosesdecoder/moses/TranslationTask.cpp
2014-12-10 11:28:47 +00:00

311 lines
10 KiB
C++

#include "TranslationTask.h"
#include "moses/StaticData.h"
#include "moses/Sentence.h"
#include "moses/IOWrapper.h"
#include "moses/TranslationAnalysis.h"
#include "moses/TypeDef.h"
#include "moses/Util.h"
#include "moses/InputType.h"
#include "moses/OutputCollector.h"
#include "moses/Incremental.h"
#include "mbr.h"
#include "moses/Syntax/S2T/Parsers/RecursiveCYKPlusParser/RecursiveCYKPlusParser.h"
#include "moses/Syntax/S2T/Parsers/Scope3Parser/Parser.h"
#include "util/exception.hh"
using namespace std;
namespace Moses
{
TranslationTask::TranslationTask(InputType* source, Moses::IOWrapper &ioWrapper, int pbOrChart)
: m_source(source)
, m_ioWrapper(ioWrapper)
, m_pbOrChart(pbOrChart)
{}
TranslationTask::~TranslationTask() {
delete m_source;
}
void TranslationTask::Run()
{
switch (m_pbOrChart)
{
case 1:
RunPb();
break;
case 2:
RunChart();
break;
default:
UTIL_THROW(util::Exception, "Unknown value: " << m_pbOrChart);
}
}
void TranslationTask::RunPb()
{
// shorthand for "global data"
const StaticData &staticData = StaticData::Instance();
// input sentence
Sentence sentence;
// report wall time spent on translation
Timer translationTime;
translationTime.start();
// report thread number
#if defined(WITH_THREADS) && defined(BOOST_HAS_PTHREADS)
TRACE_ERR("Translating line " << m_source->GetTranslationId() << " in thread id " << pthread_self() << endl);
#endif
// execute the translation
// note: this executes the search, resulting in a search graph
// we still need to apply the decision rule (MAP, MBR, ...)
Timer initTime;
initTime.start();
Manager manager(*m_source,staticData.GetSearchAlgorithm());
VERBOSE(1, "Line " << m_source->GetTranslationId() << ": Initialize search took " << initTime << " seconds total" << endl);
manager.Decode();
// we are done with search, let's look what we got
Timer additionalReportingTime;
additionalReportingTime.start();
// output word graph
manager.OutputWordGraph(m_ioWrapper.GetWordGraphCollector());
// output search graph
manager.OutputSearchGraph(m_ioWrapper.GetSearchGraphOutputCollector());
manager.OutputSearchGraphSLF();
// Output search graph in hypergraph format for Kenneth Heafield's lazy hypergraph decoder
manager.OutputSearchGraphHypergraph();
additionalReportingTime.stop();
// apply decision rule and output best translation(s)
if (m_ioWrapper.GetSingleBestOutputCollector()) {
ostringstream out;
ostringstream debug;
FixPrecision(debug,PRECISION);
// all derivations - send them to debug stream
if (staticData.PrintAllDerivations()) {
additionalReportingTime.start();
manager.PrintAllDerivations(m_source->GetTranslationId(), debug);
additionalReportingTime.stop();
}
Timer decisionRuleTime;
decisionRuleTime.start();
// MAP decoding: best hypothesis
const Hypothesis* bestHypo = NULL;
if (!staticData.UseMBR()) {
bestHypo = manager.GetBestHypothesis();
if (bestHypo) {
if (StaticData::Instance().GetOutputHypoScore()) {
out << bestHypo->GetTotalScore() << ' ';
}
if (staticData.IsPathRecoveryEnabled()) {
m_ioWrapper.OutputInput(out, bestHypo);
out << "||| ";
}
const PARAM_VEC *params = staticData.GetParameter().GetParam("print-id");
if (params && params->size() && Scan<bool>(params->at(0)) ) {
out << m_source->GetTranslationId() << " ";
}
if (staticData.GetReportSegmentation() == 2) {
manager.GetOutputLanguageModelOrder(out, bestHypo);
}
m_ioWrapper.OutputBestSurface(
out,
bestHypo,
staticData.GetOutputFactorOrder(),
staticData.GetReportSegmentation(),
staticData.GetReportAllFactors());
if (staticData.PrintAlignmentInfo()) {
out << "||| ";
m_ioWrapper.OutputAlignment(out, bestHypo);
}
manager.OutputAlignment(m_ioWrapper.GetAlignmentInfoCollector());
IFVERBOSE(1) {
debug << "BEST TRANSLATION: " << *bestHypo << endl;
}
} else {
VERBOSE(1, "NO BEST TRANSLATION" << endl);
}
out << endl;
}
// MBR decoding (n-best MBR, lattice MBR, consensus)
else {
// we first need the n-best translations
size_t nBestSize = staticData.GetMBRSize();
if (nBestSize <= 0) {
cerr << "ERROR: negative size for number of MBR candidate translations not allowed (option mbr-size)" << endl;
exit(1);
}
TrellisPathList nBestList;
manager.CalcNBest(nBestSize, nBestList,true);
VERBOSE(2,"size of n-best: " << nBestList.GetSize() << " (" << nBestSize << ")" << endl);
IFVERBOSE(2) {
PrintUserTime("calculated n-best list for (L)MBR decoding");
}
// lattice MBR
if (staticData.UseLatticeMBR()) {
if (m_ioWrapper.GetNBestOutputCollector()) {
//lattice mbr nbest
vector<LatticeMBRSolution> solutions;
size_t n = min(nBestSize, staticData.GetNBestSize());
getLatticeMBRNBest(manager,nBestList,solutions,n);
ostringstream out;
m_ioWrapper.OutputLatticeMBRNBest(out, solutions,m_source->GetTranslationId());
m_ioWrapper.GetNBestOutputCollector()->Write(m_source->GetTranslationId(), out.str());
} else {
//Lattice MBR decoding
vector<Word> mbrBestHypo = doLatticeMBR(manager,nBestList);
m_ioWrapper.OutputBestHypo(mbrBestHypo, m_source->GetTranslationId(), staticData.GetReportSegmentation(),
staticData.GetReportAllFactors(),out);
IFVERBOSE(2) {
PrintUserTime("finished Lattice MBR decoding");
}
}
}
// consensus decoding
else if (staticData.UseConsensusDecoding()) {
const TrellisPath &conBestHypo = doConsensusDecoding(manager,nBestList);
m_ioWrapper.OutputBestHypo(conBestHypo, m_source->GetTranslationId(),
staticData.GetReportSegmentation(),
staticData.GetReportAllFactors(),out);
m_ioWrapper.OutputAlignment(m_ioWrapper.GetAlignmentInfoCollector(), m_source->GetTranslationId(), conBestHypo);
IFVERBOSE(2) {
PrintUserTime("finished Consensus decoding");
}
}
// n-best MBR decoding
else {
const TrellisPath &mbrBestHypo = doMBR(nBestList);
m_ioWrapper.OutputBestHypo(mbrBestHypo, m_source->GetTranslationId(),
staticData.GetReportSegmentation(),
staticData.GetReportAllFactors(),out);
m_ioWrapper.OutputAlignment(m_ioWrapper.GetAlignmentInfoCollector(), m_source->GetTranslationId(), mbrBestHypo);
IFVERBOSE(2) {
PrintUserTime("finished MBR decoding");
}
}
}
// report best translation to output collector
m_ioWrapper.GetSingleBestOutputCollector()->Write(m_source->GetTranslationId(),out.str(),debug.str());
decisionRuleTime.stop();
VERBOSE(1, "Line " << m_source->GetTranslationId() << ": Decision rule took " << decisionRuleTime << " seconds total" << endl);
}
additionalReportingTime.start();
// output n-best list
manager.OutputNBest(m_ioWrapper.GetNBestOutputCollector());
//lattice samples
manager.OutputLatticeSamples(m_ioWrapper.GetLatticeSamplesCollector());
// detailed translation reporting
manager.OutputDetailedTranslationReport(m_ioWrapper.GetDetailedTranslationCollector());
//list of unknown words
manager.OutputUnknowns(m_ioWrapper.GetUnknownsCollector());
// report additional statistics
manager.CalcDecoderStatistics();
VERBOSE(1, "Line " << m_source->GetTranslationId() << ": Additional reporting took " << additionalReportingTime << " seconds total" << endl);
VERBOSE(1, "Line " << m_source->GetTranslationId() << ": Translation took " << translationTime << " seconds total" << endl);
IFVERBOSE(2) {
PrintUserTime("Sentence Decoding Time:");
}
}
void TranslationTask::RunChart()
{
const StaticData &staticData = StaticData::Instance();
const size_t translationId = m_source->GetTranslationId();
VERBOSE(2,"\nTRANSLATING(" << translationId << "): " << *m_source);
if (staticData.UseS2TDecoder()) {
S2TParsingAlgorithm algorithm = staticData.GetS2TParsingAlgorithm();
if (algorithm == RecursiveCYKPlus) {
typedef Syntax::S2T::EagerParserCallback Callback;
typedef Syntax::S2T::RecursiveCYKPlusParser<Callback> Parser;
DecodeS2T<Parser>();
} else if (algorithm == Scope3) {
typedef Syntax::S2T::StandardParserCallback Callback;
typedef Syntax::S2T::Scope3Parser<Callback> Parser;
DecodeS2T<Parser>();
} else {
UTIL_THROW2("ERROR: unhandled S2T parsing algorithm");
}
return;
}
if (staticData.GetSearchAlgorithm() == ChartIncremental) {
Incremental::Manager manager(*m_source);
manager.Decode();
manager.OutputBest(m_ioWrapper.GetSingleBestOutputCollector());
manager.OutputDetailedTranslationReport(m_ioWrapper.GetDetailedTranslationCollector());
manager.OutputDetailedTreeFragmentsTranslationReport(m_ioWrapper.GetDetailTreeFragmentsOutputCollector());
manager.OutputNBest(m_ioWrapper.GetNBestOutputCollector());
return;
}
ChartManager manager(*m_source);
manager.Decode();
UTIL_THROW_IF2(staticData.UseMBR(), "Cannot use MBR");
// Output search graph in hypergraph format for Kenneth Heafield's lazy hypergraph decoder
manager.OutputSearchGraphHypergraph();
// 1-best
const ChartHypothesis *bestHypo = manager.GetBestHypothesis();
m_ioWrapper.OutputBestHypo(bestHypo, translationId);
IFVERBOSE(2) {
PrintUserTime("Best Hypothesis Generation Time:");
}
manager.OutputAlignment(m_ioWrapper.GetAlignmentInfoCollector());
manager.OutputDetailedTranslationReport(m_ioWrapper.GetDetailedTranslationCollector());
manager.OutputDetailedTreeFragmentsTranslationReport(m_ioWrapper.GetDetailTreeFragmentsOutputCollector());
manager.OutputUnknowns(m_ioWrapper.GetUnknownsCollector());
// n-best
manager.OutputNBest(m_ioWrapper.GetNBestOutputCollector());
manager.OutputSearchGraph(m_ioWrapper.GetSearchGraphOutputCollector());
IFVERBOSE(2) {
PrintUserTime("Sentence Decoding Time:");
}
manager.CalcDecoderStatistics();
}
}