mosesdecoder/mert/BleuScorer.cpp
Matous Machacek ba987c94ba Support for using factors in mert and evaluator
example:
Use --factor "0|2" to use only first and third factor from nbest list and from reference.
If you use interpolated scorer, separate records with comma (e.g. --factor "0|2,1").
2012-02-28 02:27:23 +01:00

298 lines
8.8 KiB
C++

#include "BleuScorer.h"
#include <algorithm>
#include <cmath>
#include <climits>
#include <fstream>
#include <iostream>
#include <stdexcept>
#include "Util.h"
namespace {
// configure regularisation
const char KEY_REFLEN[] = "reflen";
const char REFLEN_AVERAGE[] = "average";
const char REFLEN_SHORTEST[] = "shortest";
const char REFLEN_CLOSEST[] = "closest";
} // namespace
// A simple STL-map based n-gram counts.
// Basically, we provide typical accessors and mutaors, but
// we intentionally does not allow erasing elements.
class BleuScorer::NgramCounts {
public:
// Used to construct the ngram map
struct NgramComparator {
bool operator()(const vector<int>& a, const vector<int>& b) const {
size_t i;
const size_t as = a.size();
const size_t bs = b.size();
for (i = 0; i < as && i < bs; ++i) {
if (a[i] < b[i]) {
return true;
}
if (a[i] > b[i]) {
return false;
}
}
// entries are equal, shortest wins
return as < bs;
}
};
typedef vector<int> Key;
typedef int Value;
typedef map<Key, Value, NgramComparator>::iterator iterator;
typedef map<Key, Value, NgramComparator>::const_iterator const_iterator;
NgramCounts() : kDefaultCount(1) { }
virtual ~NgramCounts() { }
// If the specified "ngram" is found, we add counts.
// If not, we insert the default count in the container.
void add(const Key& ngram) {
const_iterator it = find(ngram);
if (it != end()) {
m_counts[ngram] = it->second + 1;
} else {
m_counts[ngram] = kDefaultCount;
}
}
void clear() { m_counts.clear(); }
bool empty() const { return m_counts.empty(); }
size_t size() const { return m_counts.size(); }
size_t max_size() const { return m_counts.max_size(); }
iterator find(const Key& ngram) { return m_counts.find(ngram); }
const_iterator find(const Key& ngram) const { return m_counts.find(ngram); }
Value& operator[](const Key& ngram) { return m_counts[ngram]; }
iterator begin() { return m_counts.begin(); }
const_iterator begin() const { return m_counts.begin(); }
iterator end() { return m_counts.end(); }
const_iterator end() const { return m_counts.end(); }
private:
const int kDefaultCount;
map<Key, Value, NgramComparator> m_counts;
};
BleuScorer::BleuScorer(const string& config)
: StatisticsBasedScorer("BLEU", config),
kLENGTH(4),
m_ref_length_type(CLOSEST) {
const string reflen = getConfig(KEY_REFLEN, REFLEN_CLOSEST);
if (reflen == REFLEN_AVERAGE) {
m_ref_length_type = AVERAGE;
} else if (reflen == REFLEN_SHORTEST) {
m_ref_length_type = SHORTEST;
} else if (reflen == REFLEN_CLOSEST) {
m_ref_length_type = CLOSEST;
} else {
throw runtime_error("Unknown reference length strategy: " + reflen);
}
}
BleuScorer::~BleuScorer() {}
size_t BleuScorer::countNgrams(const string& line, NgramCounts& counts,
unsigned int n)
{
vector<int> encoded_tokens;
TokenizeAndEncode(line, encoded_tokens);
for (size_t k = 1; k <= n; ++k) {
//ngram order longer than sentence - no point
if (k > encoded_tokens.size()) {
continue;
}
for (size_t i = 0; i < encoded_tokens.size()-k+1; ++i) {
vector<int> ngram;
for (size_t j = i; j < i+k && j < encoded_tokens.size(); ++j) {
ngram.push_back(encoded_tokens[j]);
}
counts.add(ngram);
}
}
return encoded_tokens.size();
}
void BleuScorer::setReferenceFiles(const vector<string>& referenceFiles)
{
//make sure reference data is clear
m_ref_counts.reset();
m_ref_lengths.clear();
ClearEncoder();
//load reference data
for (size_t i = 0; i < referenceFiles.size(); ++i) {
TRACE_ERR("Loading reference from " << referenceFiles[i] << endl);
ifstream refin(referenceFiles[i].c_str());
if (!refin) {
throw runtime_error("Unable to open: " + referenceFiles[i]);
}
string line;
size_t sid = 0; //sentence counter
while (getline(refin,line)) {
line = this->applyFactors(line);
if (i == 0) {
NgramCounts *counts = new NgramCounts; //these get leaked
m_ref_counts.push_back(counts);
vector<size_t> lengths;
m_ref_lengths.push_back(lengths);
}
if (m_ref_counts.size() <= sid) {
throw runtime_error("File " + referenceFiles[i] + " has too many sentences");
}
NgramCounts counts;
size_t length = countNgrams(line, counts, kLENGTH);
//for any counts larger than those already there, merge them in
for (NgramCounts::const_iterator ci = counts.begin(); ci != counts.end(); ++ci) {
NgramCounts::const_iterator oldcount_it = m_ref_counts[sid]->find(ci->first);
int oldcount = 0;
if (oldcount_it != m_ref_counts[sid]->end()) {
oldcount = oldcount_it->second;
}
int newcount = ci->second;
if (newcount > oldcount) {
m_ref_counts[sid]->operator[](ci->first) = newcount;
}
}
//add in the length
m_ref_lengths[sid].push_back(length);
if (sid > 0 && sid % 100 == 0) {
TRACE_ERR(".");
}
++sid;
}
}
}
void BleuScorer::prepareStats(size_t sid, const string& text, ScoreStats& entry)
{
if (sid >= m_ref_counts.size()) {
stringstream msg;
msg << "Sentence id (" << sid << ") not found in reference set";
throw runtime_error(msg.str());
}
NgramCounts testcounts;
// stats for this line
vector<ScoreStatsType> stats(kLENGTH * 2);
string sentence = this->applyFactors(text);
const size_t length = countNgrams(sentence, testcounts, kLENGTH);
// Calculate effective reference length.
switch (m_ref_length_type) {
case SHORTEST:
CalcShortest(sid, stats);
break;
case AVERAGE:
CalcAverage(sid, stats);
break;
case CLOSEST:
CalcClosest(sid, length, stats);
break;
default:
throw runtime_error("Unsupported reflength strategy");
}
//precision on each ngram type
for (NgramCounts::const_iterator testcounts_it = testcounts.begin();
testcounts_it != testcounts.end(); ++testcounts_it) {
NgramCounts::const_iterator refcounts_it = m_ref_counts[sid]->find(testcounts_it->first);
int correct = 0;
const int guess = testcounts_it->second;
if (refcounts_it != m_ref_counts[sid]->end()) {
correct = min(refcounts_it->second,guess);
}
const size_t len = testcounts_it->first.size();
stats[len*2-2] += correct;
stats[len*2-1] += guess;
}
entry.set(stats);
}
float BleuScorer::calculateScore(const vector<int>& comps) const
{
float logbleu = 0.0;
for (int i = 0; i < kLENGTH; ++i) {
if (comps[2*i] == 0) {
return 0.0;
}
logbleu += log(comps[2*i]) - log(comps[2*i+1]);
}
logbleu /= kLENGTH;
const float brevity = 1.0 - static_cast<float>(comps[kLENGTH*2]) / comps[1];//reflength divided by test length
if (brevity < 0.0) {
logbleu += brevity;
}
return exp(logbleu);
}
void BleuScorer::dump_counts(ostream* os,
const NgramCounts& counts) const {
for (NgramCounts::const_iterator it = counts.begin();
it != counts.end(); ++it) {
*os << "(";
const NgramCounts::Key& keys = it->first;
for (size_t i = 0; i < keys.size(); ++i) {
if (i != 0) {
*os << " ";
}
*os << keys[i];
}
*os << ") : " << it->second << ", ";
}
*os << endl;
}
void BleuScorer::CalcAverage(size_t sentence_id,
vector<ScoreStatsType>& stats) const {
int total = 0;
for (size_t i = 0;
i < m_ref_lengths[sentence_id].size(); ++i) {
total += m_ref_lengths[sentence_id][i];
}
const float mean = static_cast<float>(total) /
m_ref_lengths[sentence_id].size();
stats.push_back(static_cast<ScoreStatsType>(mean));
}
void BleuScorer::CalcClosest(size_t sentence_id,
size_t length,
vector<ScoreStatsType>& stats) const {
int min_diff = INT_MAX;
int min_idx = 0;
for (size_t i = 0; i < m_ref_lengths[sentence_id].size(); ++i) {
const int reflength = m_ref_lengths[sentence_id][i];
const int length_diff = abs(reflength - static_cast<int>(length));
// Look for the closest reference
if (length_diff < abs(min_diff)) {
min_diff = reflength - length;
min_idx = i;
// if two references has the same closest length, take the shortest
} else if (length_diff == abs(min_diff)) {
if (reflength < static_cast<int>(m_ref_lengths[sentence_id][min_idx])) {
min_idx = i;
}
}
}
stats.push_back(m_ref_lengths[sentence_id][min_idx]);
}
void BleuScorer::CalcShortest(size_t sentence_id,
vector<ScoreStatsType>& stats) const {
const int shortest = *min_element(m_ref_lengths[sentence_id].begin(),
m_ref_lengths[sentence_id].end());
stats.push_back(shortest);
}