mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-27 05:55:02 +03:00
347 lines
12 KiB
C++
347 lines
12 KiB
C++
/***********************************************************************
|
|
Moses - factored phrase-based language decoder
|
|
Copyright (C) 2009 University of Edinburgh
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
***********************************************************************/
|
|
|
|
#include "Decoder.h"
|
|
#include "moses/Manager.h"
|
|
#include "moses/ChartManager.h"
|
|
#include "moses/Sentence.h"
|
|
#include "moses/InputType.h"
|
|
#include "moses/Phrase.h"
|
|
#include "moses/TrellisPathList.h"
|
|
#include "moses/ChartTrellisPathList.h"
|
|
#include "moses/ChartTrellisPath.h"
|
|
|
|
using namespace std;
|
|
using namespace Moses;
|
|
|
|
|
|
namespace Mira
|
|
{
|
|
|
|
/**
|
|
* Allocates a char* and copies string into it.
|
|
**/
|
|
static char* strToChar(const string& s)
|
|
{
|
|
char* c = new char[s.size()+1];
|
|
strcpy(c,s.c_str());
|
|
return c;
|
|
}
|
|
|
|
MosesDecoder::MosesDecoder(const string& inifile, int debuglevel, int argc, vector<string> decoder_params)
|
|
: m_manager(NULL)
|
|
{
|
|
static int BASE_ARGC = 8;
|
|
Parameter* params = new Parameter();
|
|
char ** mosesargv = new char*[BASE_ARGC + argc];
|
|
mosesargv[0] = strToChar("-f");
|
|
mosesargv[1] = strToChar(inifile);
|
|
mosesargv[2] = strToChar("-v");
|
|
stringstream dbgin;
|
|
dbgin << debuglevel;
|
|
mosesargv[3] = strToChar(dbgin.str());
|
|
mosesargv[4] = strToChar("-use-persistent-cache");
|
|
mosesargv[5] = strToChar("0");
|
|
mosesargv[6] = strToChar("-persistent-cache-size");
|
|
mosesargv[7] = strToChar("0");
|
|
|
|
for (int i = 0; i < argc; ++i) {
|
|
char *cstr = &(decoder_params[i])[0];
|
|
mosesargv[BASE_ARGC + i] = cstr;
|
|
}
|
|
|
|
if (!params->LoadParam(BASE_ARGC + argc,mosesargv)) {
|
|
cerr << "Loading static data failed, exit." << endl;
|
|
exit(1);
|
|
}
|
|
StaticData::LoadDataStatic(params, "mira");
|
|
for (int i = 0; i < BASE_ARGC; ++i) {
|
|
delete[] mosesargv[i];
|
|
}
|
|
delete[] mosesargv;
|
|
|
|
//m_bleuScoreFeature = staticData.GetBleuScoreFeature(); TODO
|
|
assert(false);
|
|
}
|
|
|
|
void MosesDecoder::cleanup(bool chartDecoding)
|
|
{
|
|
delete m_manager;
|
|
if (chartDecoding)
|
|
delete m_chartManager;
|
|
else
|
|
delete m_sentence;
|
|
}
|
|
|
|
vector< vector<const Word*> > MosesDecoder::getNBest(const std::string& source,
|
|
size_t sentenceid,
|
|
size_t nBestSize,
|
|
float bleuObjectiveWeight,
|
|
float bleuScoreWeight,
|
|
vector< ScoreComponentCollection>& featureValues,
|
|
vector< float>& bleuScores,
|
|
vector< float>& modelScores,
|
|
size_t numReturnedTranslations,
|
|
bool realBleu,
|
|
bool distinct,
|
|
bool avgRefLength,
|
|
size_t rank,
|
|
size_t epoch,
|
|
string filename)
|
|
{
|
|
StaticData &staticData = StaticData::InstanceNonConst();
|
|
bool chartDecoding = staticData.IsChart();
|
|
initialize(staticData, source, sentenceid, bleuObjectiveWeight, bleuScoreWeight, avgRefLength, chartDecoding);
|
|
|
|
// run the decoder
|
|
if (chartDecoding) {
|
|
return runChartDecoder(source, sentenceid, nBestSize, bleuObjectiveWeight, bleuScoreWeight,
|
|
featureValues, bleuScores, modelScores, numReturnedTranslations, realBleu, distinct, rank, epoch);
|
|
} else {
|
|
SearchAlgorithm search = staticData.GetSearchAlgorithm();
|
|
return runDecoder(source, sentenceid, nBestSize, bleuObjectiveWeight, bleuScoreWeight,
|
|
featureValues, bleuScores, modelScores, numReturnedTranslations, realBleu, distinct, rank, epoch,
|
|
search, filename);
|
|
}
|
|
}
|
|
|
|
vector< vector<const Word*> > MosesDecoder::runDecoder(const std::string& source,
|
|
size_t sentenceid,
|
|
size_t nBestSize,
|
|
float bleuObjectiveWeight,
|
|
float bleuScoreWeight,
|
|
vector< ScoreComponentCollection>& featureValues,
|
|
vector< float>& bleuScores,
|
|
vector< float>& modelScores,
|
|
size_t numReturnedTranslations,
|
|
bool realBleu,
|
|
bool distinct,
|
|
size_t rank,
|
|
size_t epoch,
|
|
SearchAlgorithm& search,
|
|
string filename)
|
|
{
|
|
// run the decoder
|
|
m_manager = new Moses::Manager(0,*m_sentence, search);
|
|
m_manager->ProcessSentence();
|
|
TrellisPathList nBestList;
|
|
m_manager->CalcNBest(nBestSize, nBestList, distinct);
|
|
|
|
// optionally print nbest to file (to extract scores and features.. currently just for sentence bleu scoring)
|
|
/*if (filename != "") {
|
|
ofstream out(filename.c_str());
|
|
if (!out) {
|
|
ostringstream msg;
|
|
msg << "Unable to open " << filename;
|
|
throw runtime_error(msg.str());
|
|
}
|
|
// TODO: handle sentence id (for now always 0)
|
|
//OutputNBest(out, nBestList, StaticData::Instance().GetOutputFactorOrder(), 0, false);
|
|
out.close();
|
|
}*/
|
|
|
|
// read off the feature values and bleu scores for each sentence in the nbest list
|
|
Moses::TrellisPathList::const_iterator iter;
|
|
for (iter = nBestList.begin() ; iter != nBestList.end() ; ++iter) {
|
|
const Moses::TrellisPath &path = **iter;
|
|
featureValues.push_back(path.GetScoreBreakdown());
|
|
float bleuScore, dynBleuScore, realBleuScore;
|
|
if (realBleu) realBleuScore = m_bleuScoreFeature->CalculateBleu(path.GetTargetPhrase());
|
|
else dynBleuScore = getBleuScore(featureValues.back());
|
|
bleuScore = realBleu ? realBleuScore : dynBleuScore;
|
|
bleuScores.push_back(bleuScore);
|
|
|
|
//std::cout << "Score breakdown: " << path.GetScoreBreakdown() << endl;
|
|
float scoreWithoutBleu = path.GetTotalScore() - (bleuObjectiveWeight * bleuScoreWeight * bleuScore);
|
|
modelScores.push_back(scoreWithoutBleu);
|
|
|
|
if (iter != nBestList.begin())
|
|
cerr << endl;
|
|
cerr << "Rank " << rank << ", epoch " << epoch << ", \"" << path.GetTargetPhrase() << "\", score: "
|
|
<< scoreWithoutBleu << ", Bleu: " << bleuScore << ", total: " << path.GetTotalScore();
|
|
if (m_bleuScoreFeature->Enabled() && realBleu)
|
|
cerr << " (d-bleu: " << dynBleuScore << ", r-bleu: " << realBleuScore << ") ";
|
|
|
|
// set bleu score to zero in the feature vector since we do not want to optimise its weight
|
|
setBleuScore(featureValues.back(), 0);
|
|
}
|
|
|
|
// prepare translations to return
|
|
vector< vector<const Word*> > translations;
|
|
for (size_t i=0; i < numReturnedTranslations && i < nBestList.GetSize(); ++i) {
|
|
const TrellisPath &path = nBestList.at(i);
|
|
Phrase phrase = path.GetTargetPhrase();
|
|
|
|
vector<const Word*> translation;
|
|
for (size_t pos = 0; pos < phrase.GetSize(); ++pos) {
|
|
const Word &word = phrase.GetWord(pos);
|
|
Word *newWord = new Word(word);
|
|
translation.push_back(newWord);
|
|
}
|
|
translations.push_back(translation);
|
|
}
|
|
|
|
return translations;
|
|
}
|
|
|
|
vector< vector<const Word*> > MosesDecoder::runChartDecoder(const std::string& source,
|
|
size_t sentenceid,
|
|
size_t nBestSize,
|
|
float bleuObjectiveWeight,
|
|
float bleuScoreWeight,
|
|
vector< ScoreComponentCollection>& featureValues,
|
|
vector< float>& bleuScores,
|
|
vector< float>& modelScores,
|
|
size_t numReturnedTranslations,
|
|
bool realBleu,
|
|
bool distinct,
|
|
size_t rank,
|
|
size_t epoch)
|
|
{
|
|
// run the decoder
|
|
m_chartManager = new ChartManager(*m_sentence);
|
|
m_chartManager->ProcessSentence();
|
|
ChartTrellisPathList nBestList;
|
|
m_chartManager->CalcNBest(nBestSize, nBestList, distinct);
|
|
|
|
// read off the feature values and bleu scores for each sentence in the nbest list
|
|
ChartTrellisPathList::const_iterator iter;
|
|
for (iter = nBestList.begin() ; iter != nBestList.end() ; ++iter) {
|
|
const Moses::ChartTrellisPath &path = **iter;
|
|
featureValues.push_back(path.GetScoreBreakdown());
|
|
float bleuScore, dynBleuScore, realBleuScore;
|
|
dynBleuScore = getBleuScore(featureValues.back());
|
|
realBleuScore = m_bleuScoreFeature->CalculateBleu(path.GetOutputPhrase());
|
|
bleuScore = realBleu ? realBleuScore : dynBleuScore;
|
|
bleuScores.push_back(bleuScore);
|
|
|
|
//std::cout << "Score breakdown: " << path.GetScoreBreakdown() << endl;
|
|
float scoreWithoutBleu = path.GetTotalScore() - (bleuObjectiveWeight * bleuScoreWeight * bleuScore);
|
|
modelScores.push_back(scoreWithoutBleu);
|
|
|
|
if (iter != nBestList.begin())
|
|
cerr << endl;
|
|
cerr << "Rank " << rank << ", epoch " << epoch << ", \"" << path.GetOutputPhrase() << "\", score: "
|
|
<< scoreWithoutBleu << ", Bleu: " << bleuScore << ", total: " << path.GetTotalScore();
|
|
if (m_bleuScoreFeature->Enabled() && realBleu)
|
|
cerr << " (d-bleu: " << dynBleuScore << ", r-bleu: " << realBleuScore << ") ";
|
|
|
|
// set bleu score to zero in the feature vector since we do not want to optimise its weight
|
|
setBleuScore(featureValues.back(), 0);
|
|
}
|
|
|
|
// prepare translations to return
|
|
vector< vector<const Word*> > translations;
|
|
for (iter = nBestList.begin() ; iter != nBestList.end() ; ++iter) {
|
|
const ChartTrellisPath &path = **iter;
|
|
Phrase phrase = path.GetOutputPhrase();
|
|
|
|
vector<const Word*> translation;
|
|
for (size_t pos = 0; pos < phrase.GetSize(); ++pos) {
|
|
const Word &word = phrase.GetWord(pos);
|
|
Word *newWord = new Word(word);
|
|
translation.push_back(newWord);
|
|
}
|
|
translations.push_back(translation);
|
|
}
|
|
|
|
return translations;
|
|
}
|
|
|
|
void MosesDecoder::initialize(StaticData& staticData, const std::string& source, size_t sentenceid,
|
|
float bleuObjectiveWeight, float bleuScoreWeight, bool avgRefLength, bool chartDecoding)
|
|
{
|
|
m_sentence = new Sentence();
|
|
stringstream in(source + "\n");
|
|
const std::vector<FactorType> &inputFactorOrder = staticData.GetInputFactorOrder();
|
|
m_sentence->Read(in,inputFactorOrder);
|
|
|
|
// set weight of BleuScoreFeature
|
|
//cerr << "Reload Bleu feature weight: " << bleuObjectiveWeight*bleuScoreWeight << " (" << bleuObjectiveWeight << "*" << bleuScoreWeight << ")" << endl;
|
|
staticData.ReLoadBleuScoreFeatureParameter(bleuObjectiveWeight*bleuScoreWeight);
|
|
|
|
m_bleuScoreFeature->SetCurrSourceLength((*m_sentence).GetSize());
|
|
if (chartDecoding)
|
|
m_bleuScoreFeature->SetCurrNormSourceLength((*m_sentence).GetSize()-2);
|
|
else
|
|
m_bleuScoreFeature->SetCurrNormSourceLength((*m_sentence).GetSize());
|
|
|
|
if (avgRefLength)
|
|
m_bleuScoreFeature->SetCurrAvgRefLength(sentenceid);
|
|
else
|
|
m_bleuScoreFeature->SetCurrShortestRefLength(sentenceid);
|
|
m_bleuScoreFeature->SetCurrReferenceNgrams(sentenceid);
|
|
}
|
|
|
|
float MosesDecoder::getBleuScore(const ScoreComponentCollection& scores)
|
|
{
|
|
return scores.GetScoreForProducer(m_bleuScoreFeature);
|
|
}
|
|
|
|
void MosesDecoder::setBleuScore(ScoreComponentCollection& scores, float bleu)
|
|
{
|
|
scores.Assign(m_bleuScoreFeature, bleu);
|
|
}
|
|
|
|
ScoreComponentCollection MosesDecoder::getWeights()
|
|
{
|
|
return StaticData::Instance().GetAllWeights();
|
|
}
|
|
|
|
void MosesDecoder::setWeights(const ScoreComponentCollection& weights)
|
|
{
|
|
StaticData::InstanceNonConst().SetAllWeights(weights);
|
|
}
|
|
|
|
void MosesDecoder::updateHistory(const vector<const Word*>& words)
|
|
{
|
|
m_bleuScoreFeature->UpdateHistory(words);
|
|
}
|
|
|
|
void MosesDecoder::updateHistory(const vector< vector< const Word*> >& words, vector<size_t>& sourceLengths, vector<size_t>& ref_ids, size_t rank, size_t epoch)
|
|
{
|
|
m_bleuScoreFeature->UpdateHistory(words, sourceLengths, ref_ids, rank, epoch);
|
|
}
|
|
|
|
void MosesDecoder::printBleuFeatureHistory(std::ostream& out)
|
|
{
|
|
m_bleuScoreFeature->PrintHistory(out);
|
|
}
|
|
|
|
size_t MosesDecoder::getClosestReferenceLength(size_t ref_id, int hypoLength)
|
|
{
|
|
return m_bleuScoreFeature->GetClosestRefLength(ref_id, hypoLength);
|
|
}
|
|
|
|
size_t MosesDecoder::getShortestReferenceIndex(size_t ref_id)
|
|
{
|
|
return m_bleuScoreFeature->GetShortestRefIndex(ref_id);
|
|
}
|
|
|
|
void MosesDecoder::setBleuParameters(bool disable, bool sentenceBleu, bool scaleByInputLength, bool scaleByAvgInputLength,
|
|
bool scaleByInverseLength, bool scaleByAvgInverseLength,
|
|
float scaleByX, float historySmoothing, size_t scheme, bool simpleHistoryBleu)
|
|
{
|
|
m_bleuScoreFeature->SetBleuParameters(disable, sentenceBleu, scaleByInputLength, scaleByAvgInputLength,
|
|
scaleByInverseLength, scaleByAvgInverseLength,
|
|
scaleByX, historySmoothing, scheme, simpleHistoryBleu);
|
|
}
|
|
}
|
|
|