mosesdecoder/mert/mert.cpp

506 lines
14 KiB
C++
Executable File

/**
* \description This is the main for the new version of the mert algorithm developed during the 2nd MT marathon
*/
#include <limits>
#include <unistd.h>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <cmath>
#include <ctime>
#include <getopt.h>
#include "Data.h"
#include "Point.h"
#include "Scorer.h"
#include "ScorerFactory.h"
#include "ScoreData.h"
#include "FeatureData.h"
#include "Optimizer.h"
#include "Types.h"
#include "Timer.h"
#include "Util.h"
#include "../moses/src/ThreadPool.h"
using namespace std;
namespace {
const char kDefaultOptimizer[] = "powell";
const char kDefaultScorer[] = "BLEU";
const char kDefaultScorerFile[] = "statscore.data";
const char kDefaultFeatureFile[] = "features.data";
const char kDefaultInitFile[] = "init.opt";
// Used when saving optimized weights.
const char kOutputFile[] = "weights.txt";
/**
* Runs an optimisation, or a random restart.
*/
class OptimizationTask : public Moses::Task {
public:
OptimizationTask(Optimizer* optimizer, const Point& point)
: m_optimizer(optimizer), m_point(point) {}
~OptimizationTask() {}
virtual void Run() {
m_score = m_optimizer->Run(m_point);
}
virtual bool DeleteAfterExecution() {
return false;
}
void resetOptimizer() {
if (m_optimizer) {
delete m_optimizer;
m_optimizer = NULL;
}
}
statscore_t getScore() const {
return m_score;
}
const Point& getPoint() const {
return m_point;
}
private:
// Do not allow the user to instanciate without arguments.
OptimizationTask() {}
Optimizer* m_optimizer;
Point m_point;
statscore_t m_score;
};
bool WriteFinalWeights(const char* filename, const Point& point) {
ofstream ofs(filename);
if (!ofs) {
cerr << "Cannot open " << filename << endl;
return false;
}
ofs << point << endl;
return true;
}
void usage(int ret)
{
cerr << "usage: mert -d <dimensions> (mandatory)" << endl;
cerr << "[-n] retry ntimes (default 1)" << endl;
cerr << "[-m] number of random directions in powell (default 0)"<< endl;
cerr << "[-o] the indexes to optimize(default all)" << endl;
cerr << "[-t] the optimizer(default " << kDefaultOptimizer << ")" << endl;
cerr << "[-r] the random seed (defaults to system clock)" << endl;
cerr << "[--sctype|-s] the scorer type (default " << kDefaultScorer << ")" << endl;
cerr << "[--scconfig|-c] configuration string passed to scorer" << endl;
cerr << "[--scfile|-S] comma separated list of scorer data files (default " << kDefaultScorerFile << ")" << endl;
cerr << "[--ffile|-F] comma separated list of feature data files (default " << kDefaultFeatureFile << ")" << endl;
cerr << "[--ifile|-i] the starting point data file (default " << kDefaultInitFile << ")" << endl;
#ifdef WITH_THREADS
cerr << "[--threads|-T] use multiple threads (default 1)" << endl;
#endif
cerr << "[--shard-count] Split data into shards, optimize for each shard and average" << endl;
cerr << "[--shard-size] Shard size as proportion of data. If 0, use non-overlapping shards" << endl;
cerr << "[-v] verbose level" << endl;
cerr << "[--help|-h] print this message and exit" << endl;
exit(ret);
}
static struct option long_options[] = {
{"pdim", 1, 0, 'd'},
{"ntry", 1, 0, 'n'},
{"nrandom", 1, 0, 'm'},
{"rseed", required_argument, 0, 'r'},
{"optimize", 1, 0, 'o'},
{"pro", required_argument, 0, 'p'},
{"type", 1, 0, 't'},
{"sctype", 1, 0, 's'},
{"scconfig", required_argument, 0, 'c'},
{"scfile", 1, 0, 'S'},
{"ffile", 1, 0, 'F'},
{"ifile", 1, 0, 'i'},
#ifdef WITH_THREADS
{"threads", required_argument, 0, 'T'},
#endif
{"shard-count", required_argument, 0, 'a'},
{"shard-size", required_argument, 0, 'b'},
{"verbose", 1, 0, 'v'},
{"help", no_argument, 0, 'h'},
{0, 0, 0, 0}
};
struct ProgramOption {
string to_optimize_str;
int pdim;
int ntry;
int nrandom;
int seed;
bool has_seed;
string optimize_type;
string scorer_type;
string scorer_config;
string scorer_file;
string feature_file;
string init_file;
size_t num_threads;
float shard_size;
size_t shard_count;
ProgramOption()
: to_optimize_str(""),
pdim(-1),
ntry(1),
nrandom(0),
seed(0),
has_seed(false),
optimize_type(kDefaultOptimizer),
scorer_type(kDefaultScorer),
scorer_config(""),
scorer_file(kDefaultScorerFile),
feature_file(kDefaultFeatureFile),
init_file(kDefaultInitFile),
num_threads(1),
shard_size(0),
shard_count(0) { }
};
void ParseCommandOptions(int argc, char** argv, ProgramOption* opt) {
int c;
int option_index;
while ((c = getopt_long(argc, argv, "o:r:d:n:m:t:s:S:F:v:p:", long_options, &option_index)) != -1) {
switch (c) {
case 'o':
opt->to_optimize_str = string(optarg);
break;
case 'd':
opt->pdim = strtol(optarg, NULL, 10);
break;
case 'n':
opt->ntry = strtol(optarg, NULL, 10);
break;
case 'm':
opt->nrandom = strtol(optarg, NULL, 10);
break;
case 'r':
opt->seed = strtol(optarg, NULL, 10);
opt->has_seed = true;
break;
case 't':
opt->optimize_type = string(optarg);
break;
case's':
opt->scorer_type = string(optarg);
break;
case 'c':
opt->scorer_config = string(optarg);
break;
case 'S':
opt->scorer_file = string(optarg);
break;
case 'F':
opt->feature_file = string(optarg);
break;
case 'i':
opt->init_file = string(optarg);
break;
case 'v':
setverboselevel(strtol(optarg, NULL, 10));
break;
#ifdef WITH_THREADS
case 'T':
opt->num_threads = strtol(optarg, NULL, 10);
if (opt->num_threads < 1) opt->num_threads = 1;
break;
#endif
case 'a':
opt->shard_count = strtof(optarg, NULL);
break;
case 'b':
opt->shard_size = strtof(optarg, NULL);
break;
case 'h':
usage(0);
break;
default:
usage(1);
}
}
}
} // anonymous namespace
int main(int argc, char **argv)
{
ResetUserTime();
ProgramOption option;
ParseCommandOptions(argc, argv, &option);
vector<unsigned> to_optimize;
vector<vector<parameter_t> > start_list;
vector<parameter_t> min;
vector<parameter_t> max;
// NOTE: those mins and max are the bound for the starting points of the algorithm, not strict bound on the result!
if (option.pdim < 0)
usage(1);
cerr << "shard_size = " << option.shard_size << " shard_count = " << option.shard_count << endl;
if (option.shard_size && !option.shard_count) {
cerr << "Error: shard-size provided without shard-count" << endl;
exit(1);
}
if (option.shard_size > 1 || option.shard_size < 0) {
cerr << "Error: shard-size should be between 0 and 1" << endl;
exit(1);
}
if (option.has_seed) {
cerr << "Seeding random numbers with " << option.seed << endl;
srandom(option.seed);
} else {
cerr << "Seeding random numbers with system clock " << endl;
srandom(time(NULL));
}
// read in starting points
string onefile;
while (!option.init_file.empty()) {
getNextPound(option.init_file, onefile, ",");
vector<parameter_t> start;
ifstream opt(onefile.c_str());
if (opt.fail()) {
cerr << "could not open initfile: " << option.init_file << endl;
exit(3);
}
start.resize(option.pdim);//to do:read from file
int j;
for (j = 0; j < option.pdim && !opt.fail(); j++) {
opt >> start[j];
}
if (j < option.pdim) {
cerr << option.init_file << ":Too few starting weights." << endl;
exit(3);
}
start_list.push_back(start);
// for the first time, also read in the min/max values for scores
if (start_list.size() == 1) {
min.resize(option.pdim);
for (j = 0; j < option.pdim && !opt.fail(); j++) {
opt >> min[j];
}
if (j < option.pdim) {
cerr << option.init_file << ":Too few minimum weights." << endl;
cerr << "error could not initialize start point with " << option.init_file << endl;
cerr << "j: " << j << ", pdim: " << option.pdim << endl;
exit(3);
}
max.resize(option.pdim);
for (j = 0; j < option.pdim && !opt.fail(); j++) {
opt >> max[j];
}
if (j < option.pdim) {
cerr << option.init_file << ":Too few maximum weights." << endl;
exit(3);
}
}
opt.close();
}
vector<string> ScoreDataFiles;
if (option.scorer_file.length() > 0) {
Tokenize(option.scorer_file.c_str(), ',', &ScoreDataFiles);
}
vector<string> FeatureDataFiles;
if (option.feature_file.length() > 0) {
Tokenize(option.feature_file.c_str(), ',', &FeatureDataFiles);
}
if (ScoreDataFiles.size() != FeatureDataFiles.size()) {
throw runtime_error("Error: there is a different number of previous score and feature files");
}
// it make sense to know what parameter set were used to generate the nbest
Scorer *TheScorer = ScorerFactory::getScorer(option.scorer_type, option.scorer_config);
//load data
Data data(*TheScorer);
for (size_t i = 0; i < ScoreDataFiles.size(); i++) {
cerr<<"Loading Data from: "<< ScoreDataFiles.at(i) << " and " << FeatureDataFiles.at(i) << endl;
data.load(FeatureDataFiles.at(i), ScoreDataFiles.at(i));
}
//ADDED_BY_TS
data.remove_duplicates();
//END_ADDED
PrintUserTime("Data loaded");
// starting point score over latest n-best, accumulative n-best
//vector<unsigned> bests;
//compute bests with sparse features needs to be implemented
//currently sparse weights are not even loaded
//statscore_t score = TheScorer->score(bests);
if (option.to_optimize_str.length() > 0) {
cerr << "Weights to optimize: " << option.to_optimize_str << endl;
// Parse string to get weights to optimize, and set them as active
string substring;
int index;
while (!option.to_optimize_str.empty()) {
getNextPound(option.to_optimize_str, substring, ",");
index = data.getFeatureIndex(substring);
cerr << "FeatNameIndex:" << index << " to insert" << endl;
//index = strtol(substring.c_str(), NULL, 10);
if (index >= 0 && index < option.pdim) {
to_optimize.push_back(index);
} else {
cerr << "Index " << index << " is out of bounds. Allowed indexes are [0," << option.pdim - 1 << "]." << endl;
}
}
} else {
//set all weights as active
to_optimize.resize(option.pdim);//We'll optimize on everything
for (int i = 0; i < option.pdim; i++) {
to_optimize[i] = 1;
}
}
// treat sparse features just like regular features
if (data.hasSparseFeatures()) {
data.mergeSparseFeatures();
}
#ifdef WITH_THREADS
cerr << "Creating a pool of " << option.num_threads << " threads" << endl;
Moses::ThreadPool pool(option.num_threads);
#endif
Point::setpdim(option.pdim);
Point::setdim(to_optimize.size());
//starting points consist of specified points and random restarts
vector<Point> startingPoints;
for (size_t i = 0; i < start_list.size(); ++i) {
startingPoints.push_back(Point(start_list[i], min, max));
}
for (int i = 0; i < option.ntry; ++i) {
startingPoints.push_back(Point(start_list[0], min, max));
startingPoints.back().Randomize();
}
vector<vector<OptimizationTask*> > allTasks(1);
//optional sharding
vector<Data> shards;
if (option.shard_count) {
data.createShards(option.shard_count, option.shard_size, option.scorer_config, shards);
allTasks.resize(option.shard_count);
}
// launch tasks
for (size_t i = 0; i < allTasks.size(); ++i) {
Data& data_ref = data;
if (option.shard_count)
data_ref = shards[i]; //use the sharded data if it exists
vector<OptimizationTask*>& tasks = allTasks[i];
Optimizer *optimizer = OptimizerFactory::BuildOptimizer(option.pdim, to_optimize, start_list[0], option.optimize_type, option.nrandom);
optimizer->SetScorer(data_ref.getScorer());
optimizer->SetFData(data_ref.getFeatureData());
// A task for each start point
for (size_t j = 0; j < startingPoints.size(); ++j) {
OptimizationTask* task = new OptimizationTask(optimizer, startingPoints[j]);
tasks.push_back(task);
#ifdef WITH_THREADS
pool.Submit(task);
#else
task->Run();
#endif
}
}
// wait for all threads to finish
#ifdef WITH_THREADS
pool.Stop(true);
#endif
statscore_t total = 0;
Point totalP;
// collect results
for (size_t i = 0; i < allTasks.size(); ++i) {
statscore_t best = 0, mean = 0, var = 0;
Point bestP;
for (size_t j = 0; j < allTasks[i].size(); ++j) {
statscore_t score = allTasks[i][j]->getScore();
mean += score;
var += score * score;
if (score > best) {
bestP = allTasks[i][j]->getPoint();
best = score;
}
}
mean /= static_cast<float>(option.ntry);
var /= static_cast<float>(option.ntry);
var = sqrt(abs(var - mean * mean));
if (verboselevel() > 1) {
cerr << "shard " << i << " best score: " << best << " variance of the score (for " << option.ntry << " try): " << var << endl;
}
totalP += bestP;
total += best;
if (verboselevel() > 1)
cerr << "bestP " << bestP << endl;
}
//cerr << "totalP: " << totalP << endl;
Point finalP = totalP * (1.0 / allTasks.size());
statscore_t final = total / allTasks.size();
if (verboselevel() > 1)
cerr << "bestP: " << finalP << endl;
// L1-Normalization of the best Point
if (static_cast<int>(to_optimize.size()) == option.pdim) {
finalP.NormalizeL1();
}
cerr << "Best point: " << finalP << " => " << final << endl;
if (!WriteFinalWeights(kOutputFile, finalP)) {
cerr << "Warning: Failed to write the final point" << endl;
}
for (size_t i = 0; i < allTasks.size(); ++i) {
allTasks[i][0]->resetOptimizer();
for (size_t j = 0; j < allTasks[i].size(); ++j) {
delete allTasks[i][j];
}
}
delete TheScorer;
PrintUserTime("Stopping...");
return 0;
}