mosesdecoder/moses-cmd/IOWrapper.cpp

621 lines
21 KiB
C++

// $Id$
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (c) 2006 University of Edinburgh
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the University of Edinburgh nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/
// example file on how to use moses library
#include <iostream>
#include <stack>
#include <boost/algorithm/string.hpp>
#include "moses/TypeDef.h"
#include "moses/Util.h"
#include "moses/Hypothesis.h"
#include "moses/WordsRange.h"
#include "moses/TrellisPathList.h"
#include "moses/StaticData.h"
#include "moses/DummyScoreProducers.h"
#include "moses/FeatureVector.h"
#include "moses/InputFileStream.h"
#include "IOWrapper.h"
using namespace std;
using namespace Moses;
namespace MosesCmd
{
IOWrapper::IOWrapper(
const vector<FactorType> &inputFactorOrder
, const vector<FactorType> &outputFactorOrder
, const FactorMask &inputFactorUsed
, size_t nBestSize
, const string &nBestFilePath)
:m_inputFactorOrder(inputFactorOrder)
,m_outputFactorOrder(outputFactorOrder)
,m_inputFactorUsed(inputFactorUsed)
,m_inputFile(NULL)
,m_inputStream(&std::cin)
,m_nBestStream(NULL)
,m_outputWordGraphStream(NULL)
,m_outputSearchGraphStream(NULL)
,m_detailedTranslationReportingStream(NULL)
,m_alignmentOutputStream(NULL)
{
Initialization(inputFactorOrder, outputFactorOrder
, inputFactorUsed
, nBestSize, nBestFilePath);
}
IOWrapper::IOWrapper(const std::vector<FactorType> &inputFactorOrder
, const std::vector<FactorType> &outputFactorOrder
, const FactorMask &inputFactorUsed
, size_t nBestSize
, const std::string &nBestFilePath
, const std::string &inputFilePath)
:m_inputFactorOrder(inputFactorOrder)
,m_outputFactorOrder(outputFactorOrder)
,m_inputFactorUsed(inputFactorUsed)
,m_inputFilePath(inputFilePath)
,m_inputFile(new InputFileStream(inputFilePath))
,m_nBestStream(NULL)
,m_outputWordGraphStream(NULL)
,m_outputSearchGraphStream(NULL)
,m_detailedTranslationReportingStream(NULL)
,m_alignmentOutputStream(NULL)
{
Initialization(inputFactorOrder, outputFactorOrder
, inputFactorUsed
, nBestSize, nBestFilePath);
m_inputStream = m_inputFile;
}
IOWrapper::~IOWrapper()
{
if (m_inputFile != NULL)
delete m_inputFile;
if (m_nBestStream != NULL && !m_surpressSingleBestOutput) {
// outputting n-best to file, rather than stdout. need to close file and delete obj
delete m_nBestStream;
}
if (m_outputWordGraphStream != NULL) {
delete m_outputWordGraphStream;
}
if (m_outputSearchGraphStream != NULL) {
delete m_outputSearchGraphStream;
}
delete m_detailedTranslationReportingStream;
delete m_alignmentOutputStream;
}
void IOWrapper::Initialization(const std::vector<FactorType> &/*inputFactorOrder*/
, const std::vector<FactorType> &/*outputFactorOrder*/
, const FactorMask &/*inputFactorUsed*/
, size_t nBestSize
, const std::string &nBestFilePath)
{
const StaticData &staticData = StaticData::Instance();
// n-best
m_surpressSingleBestOutput = false;
if (nBestSize > 0) {
if (nBestFilePath == "-" || nBestFilePath == "/dev/stdout") {
m_nBestStream = &std::cout;
m_surpressSingleBestOutput = true;
} else {
std::ofstream *file = new std::ofstream;
m_nBestStream = file;
file->open(nBestFilePath.c_str());
}
}
// wordgraph output
if (staticData.GetOutputWordGraph()) {
string fileName = staticData.GetParam("output-word-graph")[0];
std::ofstream *file = new std::ofstream;
m_outputWordGraphStream = file;
file->open(fileName.c_str());
}
// search graph output
if (staticData.GetOutputSearchGraph()) {
string fileName;
if (staticData.GetOutputSearchGraphExtended())
fileName = staticData.GetParam("output-search-graph-extended")[0];
else
fileName = staticData.GetParam("output-search-graph")[0];
std::ofstream *file = new std::ofstream;
m_outputSearchGraphStream = file;
file->open(fileName.c_str());
}
// detailed translation reporting
if (staticData.IsDetailedTranslationReportingEnabled()) {
const std::string &path = staticData.GetDetailedTranslationReportingFilePath();
m_detailedTranslationReportingStream = new std::ofstream(path.c_str());
CHECK(m_detailedTranslationReportingStream->good());
}
// sentence alignment output
if (! staticData.GetAlignmentOutputFile().empty()) {
m_alignmentOutputStream = new ofstream(staticData.GetAlignmentOutputFile().c_str());
CHECK(m_alignmentOutputStream->good());
}
}
InputType*IOWrapper::GetInput(InputType* inputType)
{
if(inputType->Read(*m_inputStream, m_inputFactorOrder)) {
if (long x = inputType->GetTranslationId()) {
if (x>=m_translationId) m_translationId = x+1;
} else inputType->SetTranslationId(m_translationId++);
return inputType;
} else {
delete inputType;
return NULL;
}
}
/***
* print surface factor only for the given phrase
*/
void OutputSurface(std::ostream &out, const Hypothesis &edge, const std::vector<FactorType> &outputFactorOrder,
bool reportSegmentation, bool reportAllFactors)
{
CHECK(outputFactorOrder.size() > 0);
const Phrase& phrase = edge.GetCurrTargetPhrase();
if (reportAllFactors == true) {
out << phrase;
} else {
size_t size = phrase.GetSize();
for (size_t pos = 0 ; pos < size ; pos++) {
const Factor *factor = phrase.GetFactor(pos, outputFactorOrder[0]);
out << *factor;
CHECK(factor);
for (size_t i = 1 ; i < outputFactorOrder.size() ; i++) {
const Factor *factor = phrase.GetFactor(pos, outputFactorOrder[i]);
CHECK(factor);
out << "|" << *factor;
}
out << " ";
}
}
// trace option "-t"
if (reportSegmentation == true && phrase.GetSize() > 0) {
out << "|" << edge.GetCurrSourceWordsRange().GetStartPos()
<< "-" << edge.GetCurrSourceWordsRange().GetEndPos() << "| ";
}
}
void OutputBestSurface(std::ostream &out, const Hypothesis *hypo, const std::vector<FactorType> &outputFactorOrder,
bool reportSegmentation, bool reportAllFactors)
{
if (hypo != NULL) {
// recursively retrace this best path through the lattice, starting from the end of the hypothesis sentence
OutputBestSurface(out, hypo->GetPrevHypo(), outputFactorOrder, reportSegmentation, reportAllFactors);
OutputSurface(out, *hypo, outputFactorOrder, reportSegmentation, reportAllFactors);
}
}
void OutputAlignment(ostream &out, const AlignmentInfo &ai, size_t sourceOffset, size_t targetOffset)
{
typedef std::vector< const std::pair<size_t,size_t>* > AlignVec;
AlignVec alignments = ai.GetSortedAlignments();
AlignVec::const_iterator it;
for (it = alignments.begin(); it != alignments.end(); ++it) {
const std::pair<size_t,size_t> &alignment = **it;
out << alignment.first + sourceOffset << "-" << alignment.second + targetOffset << " ";
}
}
void OutputAlignment(ostream &out, const vector<const Hypothesis *> &edges)
{
size_t targetOffset = 0;
for (int currEdge = (int)edges.size() - 1 ; currEdge >= 0 ; currEdge--) {
const Hypothesis &edge = *edges[currEdge];
const TargetPhrase &tp = edge.GetCurrTargetPhrase();
size_t sourceOffset = edge.GetCurrSourceWordsRange().GetStartPos();
OutputAlignment(out, tp.GetAlignTerm(), sourceOffset, targetOffset);
targetOffset += tp.GetSize();
}
out << std::endl;
}
void OutputAlignment(OutputCollector* collector, size_t lineNo , const vector<const Hypothesis *> &edges)
{
ostringstream out;
OutputAlignment(out, edges);
collector->Write(lineNo,out.str());
}
void OutputAlignment(OutputCollector* collector, size_t lineNo , const Hypothesis *hypo)
{
if (collector) {
std::vector<const Hypothesis *> edges;
const Hypothesis *currentHypo = hypo;
while (currentHypo) {
edges.push_back(currentHypo);
currentHypo = currentHypo->GetPrevHypo();
}
OutputAlignment(collector,lineNo, edges);
}
}
void OutputAlignment(OutputCollector* collector, size_t lineNo , const TrellisPath &path)
{
if (collector) {
OutputAlignment(collector,lineNo, path.GetEdges());
}
}
void OutputBestHypo(const Moses::TrellisPath &path, long /*translationId*/, bool reportSegmentation, bool reportAllFactors, std::ostream &out)
{
const std::vector<const Hypothesis *> &edges = path.GetEdges();
for (int currEdge = (int)edges.size() - 1 ; currEdge >= 0 ; currEdge--) {
const Hypothesis &edge = *edges[currEdge];
OutputSurface(out, edge, StaticData::Instance().GetOutputFactorOrder(), reportSegmentation, reportAllFactors);
}
out << endl;
}
void IOWrapper::Backtrack(const Hypothesis *hypo)
{
if (hypo->GetPrevHypo() != NULL) {
VERBOSE(3,hypo->GetId() << " <= ");
Backtrack(hypo->GetPrevHypo());
}
}
void OutputBestHypo(const std::vector<Word>& mbrBestHypo, long /*translationId*/, bool /*reportSegmentation*/, bool /*reportAllFactors*/, ostream& out)
{
for (size_t i = 0 ; i < mbrBestHypo.size() ; i++) {
const Factor *factor = mbrBestHypo[i].GetFactor(StaticData::Instance().GetOutputFactorOrder()[0]);
CHECK(factor);
if (i>0) out << " " << *factor;
else out << *factor;
}
out << endl;
}
void OutputInput(std::vector<const Phrase*>& map, const Hypothesis* hypo)
{
if (hypo->GetPrevHypo()) {
OutputInput(map, hypo->GetPrevHypo());
map[hypo->GetCurrSourceWordsRange().GetStartPos()] = hypo->GetSourcePhrase();
}
}
void OutputInput(std::ostream& os, const Hypothesis* hypo)
{
size_t len = hypo->GetInput().GetSize();
std::vector<const Phrase*> inp_phrases(len, 0);
OutputInput(inp_phrases, hypo);
for (size_t i=0; i<len; ++i)
if (inp_phrases[i]) os << *inp_phrases[i];
}
void IOWrapper::OutputBestHypo(const Hypothesis *hypo, long /*translationId*/, bool reportSegmentation, bool reportAllFactors)
{
if (hypo != NULL) {
VERBOSE(1,"BEST TRANSLATION: " << *hypo << endl);
VERBOSE(3,"Best path: ");
Backtrack(hypo);
VERBOSE(3,"0" << std::endl);
if (!m_surpressSingleBestOutput) {
if (StaticData::Instance().IsPathRecoveryEnabled()) {
OutputInput(cout, hypo);
cout << "||| ";
}
OutputBestSurface(cout, hypo, m_outputFactorOrder, reportSegmentation, reportAllFactors);
cout << endl;
}
} else {
VERBOSE(1, "NO BEST TRANSLATION" << endl);
if (!m_surpressSingleBestOutput) {
cout << endl;
}
}
}
void OutputNBest(std::ostream& out, const Moses::TrellisPathList &nBestList, const std::vector<Moses::FactorType>& outputFactorOrder, const TranslationSystem* system, long translationId, bool reportSegmentation)
{
const StaticData &staticData = StaticData::Instance();
bool labeledOutput = staticData.IsLabeledNBestList();
bool reportAllFactors = staticData.GetReportAllFactorsNBest();
bool includeSegmentation = staticData.NBestIncludesSegmentation();
bool includeWordAlignment = staticData.PrintAlignmentInfoInNbest();
TrellisPathList::const_iterator iter;
for (iter = nBestList.begin() ; iter != nBestList.end() ; ++iter) {
const TrellisPath &path = **iter;
const std::vector<const Hypothesis *> &edges = path.GetEdges();
// print the surface factor of the translation
out << translationId << " ||| ";
for (int currEdge = (int)edges.size() - 1 ; currEdge >= 0 ; currEdge--) {
const Hypothesis &edge = *edges[currEdge];
OutputSurface(out, edge, outputFactorOrder, reportSegmentation, reportAllFactors);
}
out << " |||";
// print scores with feature names
OutputAllFeatureScores( out, system, path );
string lastName;
// translation components
const vector<PhraseDictionaryFeature*>& pds = system->GetPhraseDictionaries();
if (pds.size() > 0) {
for( size_t i=0; i<pds.size(); i++ ) {
size_t pd_numinputscore = pds[i]->GetNumInputScores();
vector<float> scores = path.GetScoreBreakdown().GetScoresForProducer( pds[i] );
for (size_t j = 0; j<scores.size(); ++j){
if (labeledOutput && (i == 0) ){
if ((j == 0) || (j == pd_numinputscore)){
lastName = pds[i]->GetScoreProducerWeightShortName(j);
out << " " << lastName << ":";
}
}
out << " " << scores[j];
}
}
}
// generation
const vector<GenerationDictionary*>& gds = system->GetGenerationDictionaries();
if (gds.size() > 0) {
for( size_t i=0; i<gds.size(); i++ ) {
size_t pd_numinputscore = gds[i]->GetNumInputScores();
vector<float> scores = path.GetScoreBreakdown().GetScoresForProducer( gds[i] );
for (size_t j = 0; j<scores.size(); ++j){
if (labeledOutput && (i == 0) ){
if ((j == 0) || (j == pd_numinputscore)){
lastName = gds[i]->GetScoreProducerWeightShortName(j);
out << " " << lastName << ":";
}
}
out << " " << scores[j];
}
}
}
// total
out << " ||| " << path.GetTotalScore();
//phrase-to-phrase segmentation
if (includeSegmentation) {
out << " |||";
for (int currEdge = (int)edges.size() - 2 ; currEdge >= 0 ; currEdge--) {
const Hypothesis &edge = *edges[currEdge];
const WordsRange &sourceRange = edge.GetCurrSourceWordsRange();
WordsRange targetRange = path.GetTargetWordsRange(edge);
out << " " << sourceRange.GetStartPos();
if (sourceRange.GetStartPos() < sourceRange.GetEndPos()) {
out << "-" << sourceRange.GetEndPos();
}
out<< "=" << targetRange.GetStartPos();
if (targetRange.GetStartPos() < targetRange.GetEndPos()) {
out<< "-" << targetRange.GetEndPos();
}
}
}
if (includeWordAlignment) {
out << " ||| ";
for (int currEdge = (int)edges.size() - 2 ; currEdge >= 0 ; currEdge--) {
const Hypothesis &edge = *edges[currEdge];
const WordsRange &sourceRange = edge.GetCurrSourceWordsRange();
WordsRange targetRange = path.GetTargetWordsRange(edge);
const int sourceOffset = sourceRange.GetStartPos();
const int targetOffset = targetRange.GetStartPos();
const AlignmentInfo &ai = edge.GetCurrTargetPhrase().GetAlignTerm();
OutputAlignment(out, ai, sourceOffset, targetOffset);
}
}
if (StaticData::Instance().IsPathRecoveryEnabled()) {
out << "|||";
OutputInput(out, edges[0]);
}
out << endl;
}
out << std::flush;
}
void OutputAllFeatureScores( std::ostream& out, const TranslationSystem* system, const TrellisPath &path )
{
std::string lastName = "";
const vector<const StatefulFeatureFunction*>& sff = system->GetStatefulFeatureFunctions();
for( size_t i=0; i<sff.size(); i++ )
if (sff[i]->GetScoreProducerWeightShortName() != "bl")
OutputFeatureScores( out, path, sff[i], lastName );
const vector<const StatelessFeatureFunction*>& slf = system->GetStatelessFeatureFunctions();
for( size_t i=0; i<slf.size(); i++ )
if (slf[i]->GetScoreProducerWeightShortName() != "u" &&
slf[i]->GetScoreProducerWeightShortName() != "tm" &&
slf[i]->GetScoreProducerWeightShortName() != "I" &&
slf[i]->GetScoreProducerWeightShortName() != "g")
OutputFeatureScores( out, path, slf[i], lastName );
}
void OutputFeatureScores( std::ostream& out, const TrellisPath &path, const FeatureFunction *ff, std::string &lastName )
{
const StaticData &staticData = StaticData::Instance();
bool labeledOutput = staticData.IsLabeledNBestList();
// regular features (not sparse)
if (ff->GetNumScoreComponents() != ScoreProducer::unlimited) {
if( labeledOutput && lastName != ff->GetScoreProducerWeightShortName() ) {
lastName = ff->GetScoreProducerWeightShortName();
out << " " << lastName << ":";
}
vector<float> scores = path.GetScoreBreakdown().GetScoresForProducer( ff );
for (size_t j = 0; j<scores.size(); ++j) {
out << " " << scores[j];
}
}
// sparse features
else {
const FVector scores = path.GetScoreBreakdown().GetVectorForProducer( ff );
// report weighted aggregate
if (! ff->GetSparseFeatureReporting()) {
const FVector &weights = staticData.GetAllWeights().GetScoresVector();
if (labeledOutput && !boost::contains(ff->GetScoreProducerDescription(), ":"))
out << " " << ff->GetScoreProducerWeightShortName() << ":";
out << " " << scores.inner_product(weights);
}
// report each feature
else {
for(FVector::FNVmap::const_iterator i = scores.cbegin(); i != scores.cend(); i++)
out << " " << i->first << ": " << i->second;
/* if (i->second != 0) { // do not report zero-valued features
float weight = staticData.GetSparseWeight(i->first);
if (weight != 0)
out << " " << i->first << "=" << weight;
}*/
}
}
}
void OutputLatticeMBRNBest(std::ostream& out, const vector<LatticeMBRSolution>& solutions,long translationId)
{
for (vector<LatticeMBRSolution>::const_iterator si = solutions.begin(); si != solutions.end(); ++si) {
out << translationId;
out << " |||";
const vector<Word> mbrHypo = si->GetWords();
for (size_t i = 0 ; i < mbrHypo.size() ; i++) {
const Factor *factor = mbrHypo[i].GetFactor(StaticData::Instance().GetOutputFactorOrder()[0]);
if (i>0) out << " " << *factor;
else out << *factor;
}
out << " |||";
out << " map: " << si->GetMapScore();
out << " w: " << mbrHypo.size();
const vector<float>& ngramScores = si->GetNgramScores();
for (size_t i = 0; i < ngramScores.size(); ++i) {
out << " " << ngramScores[i];
}
out << " ||| " << si->GetScore();
out << endl;
}
}
void IOWrapper::OutputLatticeMBRNBestList(const vector<LatticeMBRSolution>& solutions,long translationId)
{
OutputLatticeMBRNBest(*m_nBestStream, solutions,translationId);
}
bool ReadInput(IOWrapper &ioWrapper, InputTypeEnum inputType, InputType*& source)
{
delete source;
switch(inputType) {
case SentenceInput:
source = ioWrapper.GetInput(new Sentence);
break;
case ConfusionNetworkInput:
source = ioWrapper.GetInput(new ConfusionNet);
break;
case WordLatticeInput:
source = ioWrapper.GetInput(new WordLattice);
break;
default:
TRACE_ERR("Unknown input type: " << inputType << "\n");
}
return (source ? true : false);
}
IOWrapper *GetIOWrapper(const StaticData &staticData)
{
IOWrapper *ioWrapper;
const std::vector<FactorType> &inputFactorOrder = staticData.GetInputFactorOrder()
,&outputFactorOrder = staticData.GetOutputFactorOrder();
FactorMask inputFactorUsed(inputFactorOrder);
// io
if (staticData.GetParam("input-file").size() == 1) {
VERBOSE(2,"IO from File" << endl);
string filePath = staticData.GetParam("input-file")[0];
ioWrapper = new IOWrapper(inputFactorOrder, outputFactorOrder, inputFactorUsed
, staticData.GetNBestSize()
, staticData.GetNBestFilePath()
, filePath);
} else {
VERBOSE(1,"IO from STDOUT/STDIN" << endl);
ioWrapper = new IOWrapper(inputFactorOrder, outputFactorOrder, inputFactorUsed
, staticData.GetNBestSize()
, staticData.GetNBestFilePath());
}
ioWrapper->ResetTranslationId();
IFVERBOSE(1)
PrintUserTime("Created input-output object");
return ioWrapper;
}
}