mosesdecoder/moses/StaticData.cpp
2016-08-13 14:09:26 +01:00

962 lines
30 KiB
C++

// -*- mode: c++; indent-tabs-mode: nil; tab-width: 2 -*-
// $Id$
// vim:tabstop=2
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <string>
#include <boost/algorithm/string/predicate.hpp>
#include "moses/FF/Factory.h"
#include "TypeDef.h"
#include "moses/FF/WordPenaltyProducer.h"
#include "moses/FF/UnknownWordPenaltyProducer.h"
#include "moses/FF/InputFeature.h"
#include "moses/FF/DynamicCacheBasedLanguageModel.h"
#include "moses/TranslationModel/PhraseDictionaryDynamicCacheBased.h"
#include "DecodeStepTranslation.h"
#include "DecodeStepGeneration.h"
#include "GenerationDictionary.h"
#include "StaticData.h"
#include "Util.h"
#include "FactorCollection.h"
#include "Timer.h"
#include "TranslationOption.h"
#include "DecodeGraph.h"
#include "InputFileStream.h"
#include "ScoreComponentCollection.h"
#include "DecodeGraph.h"
#include "TranslationModel/PhraseDictionary.h"
#include "TranslationModel/PhraseDictionaryTreeAdaptor.h"
#ifdef WITH_THREADS
#include <boost/thread.hpp>
#endif
#ifdef HAVE_CMPH
#include "moses/TranslationModel/CompactPT/PhraseDictionaryCompact.h"
#endif
#if defined HAVE_CMPH
#include "moses/TranslationModel/CompactPT/LexicalReorderingTableCompact.h"
#endif
using namespace std;
using namespace boost::algorithm;
namespace Moses
{
StaticData StaticData::s_instance;
StaticData::StaticData()
: m_options(new AllOptions)
, m_requireSortingAfterSourceContext(false)
, m_currentWeightSetting("default")
, m_treeStructure(NULL)
, m_coordSpaceNextID(1)
{
Phrase::InitializeMemPool();
}
StaticData::~StaticData()
{
RemoveAllInColl(m_decodeGraphs);
Phrase::FinalizeMemPool();
}
bool StaticData::LoadDataStatic(Parameter *parameter, const std::string &execPath)
{
s_instance.SetExecPath(execPath);
return s_instance.LoadData(parameter);
}
void
StaticData
::initialize_features()
{
std::map<std::string, std::string> featureNameOverride = OverrideFeatureNames();
// all features
map<string, int> featureIndexMap;
const PARAM_VEC* params = m_parameter->GetParam("feature");
for (size_t i = 0; params && i < params->size(); ++i) {
const string &line = Trim(params->at(i));
VERBOSE(1,"line=" << line << endl);
if (line.empty())
continue;
vector<string> toks = Tokenize(line);
string &feature = toks[0];
std::map<std::string, std::string>::const_iterator iter
= featureNameOverride.find(feature);
if (iter == featureNameOverride.end()) {
// feature name not override
m_registry.Construct(feature, line);
} else {
// replace feature name with new name
string newName = iter->second;
feature = newName;
string newLine = Join(" ", toks);
m_registry.Construct(newName, newLine);
}
}
NoCache();
OverrideFeatures();
}
bool
StaticData
::ini_output_options()
{
// verbose level
m_parameter->SetParameter(m_verboseLevel, "verbose", (size_t) 1);
m_parameter->SetParameter<string>(m_outputUnknownsFile,
"output-unknowns", "");
return true;
}
// threads, timeouts, etc.
bool
StaticData
::ini_performance_options()
{
const PARAM_VEC *params;
m_threadCount = 1;
params = m_parameter->GetParam("threads");
if (params && params->size()) {
if (params->at(0) == "all") {
#ifdef WITH_THREADS
m_threadCount = boost::thread::hardware_concurrency();
if (!m_threadCount) {
std::cerr << "-threads all specified but Boost doesn't know how many cores there are";
return false;
}
#else
std::cerr << "-threads all specified but moses not built with thread support";
return false;
#endif
} else {
m_threadCount = Scan<int>(params->at(0));
if (m_threadCount < 1) {
std::cerr << "Specify at least one thread.";
return false;
}
#ifndef WITH_THREADS
if (m_threadCount > 1) {
std::cerr << "Error: Thread count of " << params->at(0)
<< " but moses not built with thread support";
return false;
}
#endif
}
}
return true;
}
bool StaticData::LoadData(Parameter *parameter)
{
m_parameter = parameter;
const PARAM_VEC *params;
m_options->init(*parameter);
if (is_syntax(m_options->search.algo))
m_options->syntax.LoadNonTerminals(*parameter, FactorCollection::Instance());
if (is_syntax(m_options->search.algo))
LoadChartDecodingParameters();
// ORDER HERE MATTERS, SO DON'T CHANGE IT UNLESS YOU KNOW WHAT YOU ARE DOING!
// input, output
m_parameter->SetParameter<string>(m_factorDelimiter, "factor-delimiter", "|");
m_parameter->SetParameter<size_t>(m_lmcache_cleanup_threshold, "clean-lm-cache", 1);
m_bookkeeping_options.init(*parameter);
if (!ini_output_options()) return false;
// threading etc.
if (!ini_performance_options()) return false;
// FEATURE FUNCTION INITIALIZATION HAPPENS HERE ===============================
// set class-specific default parameters
#if defined HAVE_CMPH
LexicalReorderingTableCompact::SetStaticDefaultParameters(*parameter);
PhraseDictionaryCompact::SetStaticDefaultParameters(*parameter);
#endif
initialize_features();
if (m_parameter->GetParam("show-weights") == NULL)
LoadFeatureFunctions();
LoadDecodeGraphs();
// sanity check that there are no weights without an associated FF
if (!CheckWeights()) return false;
//Load extra feature weights
string weightFile;
m_parameter->SetParameter<string>(weightFile, "weight-file", "");
if (!weightFile.empty()) {
ScoreComponentCollection extraWeights;
if (!extraWeights.Load(weightFile)) {
std::cerr << "Unable to load weights from " << weightFile;
return false;
}
m_allWeights.PlusEquals(extraWeights);
}
//Load sparse features from config (overrules weight file)
LoadSparseWeightsFromConfig();
// load alternate weight settings
//
// When and where are these used??? [UG]
//
// Update: Just checked the manual. The config file is NOT the right
// place to do this. [UG]
//
// <TODO>
// * Eliminate alternate-weight-setting. Alternate weight settings should
// be provided with the input, not in the config file.
// </TODO>
params = m_parameter->GetParam("alternate-weight-setting");
if (params && params->size() && !LoadAlternateWeightSettings())
return false;
return true;
}
void StaticData::SetWeight(const FeatureFunction* sp, float weight)
{
m_allWeights.Resize();
m_allWeights.Assign(sp,weight);
}
void StaticData::SetWeights(const FeatureFunction* sp,
const std::vector<float>& weights)
{
m_allWeights.Resize();
m_allWeights.Assign(sp,weights);
}
void StaticData::LoadNonTerminals()
{
string defaultNonTerminals;
m_parameter->SetParameter<string>(defaultNonTerminals, "non-terminals", "X");
FactorCollection &factorCollection = FactorCollection::Instance();
m_inputDefaultNonTerminal.SetIsNonTerminal(true);
const Factor *sourceFactor = factorCollection.AddFactor(Input, 0, defaultNonTerminals, true);
m_inputDefaultNonTerminal.SetFactor(0, sourceFactor);
m_outputDefaultNonTerminal.SetIsNonTerminal(true);
const Factor *targetFactor = factorCollection.AddFactor(Output, 0, defaultNonTerminals, true);
m_outputDefaultNonTerminal.SetFactor(0, targetFactor);
// for unknown words
const PARAM_VEC *params = m_parameter->GetParam("unknown-lhs");
if (params == NULL || params->size() == 0) {
UnknownLHSEntry entry(defaultNonTerminals, 0.0f);
m_unknownLHS.push_back(entry);
} else {
const string &filePath = params->at(0);
InputFileStream inStream(filePath);
string line;
while(getline(inStream, line)) {
vector<string> tokens = Tokenize(line);
UTIL_THROW_IF2(tokens.size() != 2,
"Incorrect unknown LHS format: " << line);
UnknownLHSEntry entry(tokens[0], Scan<float>(tokens[1]));
m_unknownLHS.push_back(entry);
// const Factor *targetFactor =
factorCollection.AddFactor(Output, 0, tokens[0], true);
}
}
}
void StaticData::LoadChartDecodingParameters()
{
LoadNonTerminals();
// source label overlap
m_parameter->SetParameter(m_sourceLabelOverlap, "source-label-overlap",
SourceLabelOverlapAdd);
}
void StaticData::LoadDecodeGraphs()
{
vector<string> mappingVector;
vector<size_t> maxChartSpans;
const PARAM_VEC *params;
params = m_parameter->GetParam("mapping");
if (params && params->size()) {
mappingVector = *params;
} else {
mappingVector.assign(1,"0 T 0");
}
params = m_parameter->GetParam("max-chart-span");
if (params && params->size()) {
maxChartSpans = Scan<size_t>(*params);
}
vector<string> toks = Tokenize(mappingVector[0]);
if (toks.size() == 3) {
// eg 0 T 0
LoadDecodeGraphsOld(mappingVector, maxChartSpans);
} else if (toks.size() == 2) {
if (toks[0] == "T" || toks[0] == "G") {
// eg. T 0
LoadDecodeGraphsOld(mappingVector, maxChartSpans);
} else {
// eg. 0 TM1
LoadDecodeGraphsNew(mappingVector, maxChartSpans);
}
} else {
UTIL_THROW(util::Exception, "Malformed mapping");
}
}
void
StaticData::
LoadDecodeGraphsOld(const vector<string> &mappingVector,
const vector<size_t> &maxChartSpans)
{
const vector<PhraseDictionary*>& pts = PhraseDictionary::GetColl();
const vector<GenerationDictionary*>& gens = GenerationDictionary::GetColl();
const std::vector<FeatureFunction*> *featuresRemaining
= &FeatureFunction::GetFeatureFunctions();
DecodeStep *prev = 0;
size_t prevDecodeGraphInd = 0;
for(size_t i=0; i<mappingVector.size(); i++) {
vector<string> token = Tokenize(mappingVector[i]);
size_t decodeGraphInd;
DecodeType decodeType;
size_t index;
if (token.size() == 2) {
// eg. T 0
decodeGraphInd = 0;
decodeType = token[0] == "T" ? Translate : Generate;
index = Scan<size_t>(token[1]);
} else if (token.size() == 3) {
// eg. 0 T 0
// For specifying multiple translation model
decodeGraphInd = Scan<size_t>(token[0]);
//the vectorList index can only increment by one
UTIL_THROW_IF2(decodeGraphInd != prevDecodeGraphInd
&& decodeGraphInd != prevDecodeGraphInd + 1,
"Malformed mapping");
if (decodeGraphInd > prevDecodeGraphInd) {
prev = NULL;
}
if (prevDecodeGraphInd < decodeGraphInd) {
featuresRemaining = &FeatureFunction::GetFeatureFunctions();
}
decodeType = token[1] == "T" ? Translate : Generate;
index = Scan<size_t>(token[2]);
} else {
UTIL_THROW(util::Exception, "Malformed mapping");
}
DecodeStep* decodeStep = NULL;
switch (decodeType) {
case Translate:
if(index>=pts.size()) {
util::StringStream strme;
strme << "No phrase dictionary with index "
<< index << " available!";
UTIL_THROW(util::Exception, strme.str());
}
decodeStep = new DecodeStepTranslation(pts[index], prev, *featuresRemaining);
break;
case Generate:
if(index>=gens.size()) {
util::StringStream strme;
strme << "No generation dictionary with index "
<< index << " available!";
UTIL_THROW(util::Exception, strme.str());
}
decodeStep = new DecodeStepGeneration(gens[index], prev, *featuresRemaining);
break;
default:
UTIL_THROW(util::Exception, "Unknown decode step");
break;
}
featuresRemaining = &decodeStep->GetFeaturesRemaining();
UTIL_THROW_IF2(decodeStep == NULL, "Null decode step");
if (m_decodeGraphs.size() < decodeGraphInd + 1) {
DecodeGraph *decodeGraph;
if (is_syntax(m_options->search.algo)) {
size_t maxChartSpan = (decodeGraphInd < maxChartSpans.size()) ? maxChartSpans[decodeGraphInd] : DEFAULT_MAX_CHART_SPAN;
VERBOSE(1,"max-chart-span: " << maxChartSpans[decodeGraphInd] << endl);
decodeGraph = new DecodeGraph(m_decodeGraphs.size(), maxChartSpan);
} else {
decodeGraph = new DecodeGraph(m_decodeGraphs.size());
}
m_decodeGraphs.push_back(decodeGraph); // TODO max chart span
}
m_decodeGraphs[decodeGraphInd]->Add(decodeStep);
prev = decodeStep;
prevDecodeGraphInd = decodeGraphInd;
}
// set maximum n-gram size for backoff approach to decoding paths
// default is always use subsequent paths (value = 0)
// if specified, record maxmimum unseen n-gram size
const vector<string> *backoffVector = m_parameter->GetParam("decoding-graph-backoff");
for(size_t i=0; i<m_decodeGraphs.size() && backoffVector && i<backoffVector->size(); i++) {
DecodeGraph &decodeGraph = *m_decodeGraphs[i];
if (i < backoffVector->size()) {
decodeGraph.SetBackoff(Scan<size_t>(backoffVector->at(i)));
}
}
}
void StaticData::LoadDecodeGraphsNew(const std::vector<std::string> &mappingVector, const std::vector<size_t> &maxChartSpans)
{
const std::vector<FeatureFunction*> *featuresRemaining = &FeatureFunction::GetFeatureFunctions();
DecodeStep *prev = 0;
size_t prevDecodeGraphInd = 0;
for(size_t i=0; i<mappingVector.size(); i++) {
vector<string> token = Tokenize(mappingVector[i]);
size_t decodeGraphInd;
decodeGraphInd = Scan<size_t>(token[0]);
//the vectorList index can only increment by one
UTIL_THROW_IF2(decodeGraphInd != prevDecodeGraphInd
&& decodeGraphInd != prevDecodeGraphInd + 1,
"Malformed mapping");
if (decodeGraphInd > prevDecodeGraphInd) {
prev = NULL;
}
if (prevDecodeGraphInd < decodeGraphInd) {
featuresRemaining = &FeatureFunction::GetFeatureFunctions();
}
FeatureFunction &ff = FeatureFunction::FindFeatureFunction(token[1]);
DecodeStep* decodeStep = NULL;
if (typeid(ff) == typeid(PhraseDictionary)) {
decodeStep = new DecodeStepTranslation(&static_cast<PhraseDictionary&>(ff), prev, *featuresRemaining);
} else if (typeid(ff) == typeid(GenerationDictionary)) {
decodeStep = new DecodeStepGeneration(&static_cast<GenerationDictionary&>(ff), prev, *featuresRemaining);
} else {
UTIL_THROW(util::Exception, "Unknown decode step");
}
featuresRemaining = &decodeStep->GetFeaturesRemaining();
UTIL_THROW_IF2(decodeStep == NULL, "Null decode step");
if (m_decodeGraphs.size() < decodeGraphInd + 1) {
DecodeGraph *decodeGraph;
if (is_syntax(m_options->search.algo)) {
size_t maxChartSpan = (decodeGraphInd < maxChartSpans.size()) ? maxChartSpans[decodeGraphInd] : DEFAULT_MAX_CHART_SPAN;
VERBOSE(1,"max-chart-span: " << maxChartSpans[decodeGraphInd] << endl);
decodeGraph = new DecodeGraph(m_decodeGraphs.size(), maxChartSpan);
} else {
decodeGraph = new DecodeGraph(m_decodeGraphs.size());
}
m_decodeGraphs.push_back(decodeGraph); // TODO max chart span
}
m_decodeGraphs[decodeGraphInd]->Add(decodeStep);
prev = decodeStep;
prevDecodeGraphInd = decodeGraphInd;
}
// set maximum n-gram size for backoff approach to decoding paths
// default is always use subsequent paths (value = 0)
// if specified, record maxmimum unseen n-gram size
const vector<string> *backoffVector = m_parameter->GetParam("decoding-graph-backoff");
for(size_t i=0; i<m_decodeGraphs.size() && backoffVector && i<backoffVector->size(); i++) {
DecodeGraph &decodeGraph = *m_decodeGraphs[i];
if (i < backoffVector->size()) {
decodeGraph.SetBackoff(Scan<size_t>(backoffVector->at(i)));
}
}
}
void StaticData::ReLoadBleuScoreFeatureParameter(float weight)
{
//loop over ScoreProducers to update weights of BleuScoreFeature
const std::vector<FeatureFunction*> &producers = FeatureFunction::GetFeatureFunctions();
for(size_t i=0; i<producers.size(); ++i) {
FeatureFunction *ff = producers[i];
std::string ffName = ff->GetScoreProducerDescription();
if (ffName == "BleuScoreFeature") {
SetWeight(ff, weight);
break;
}
}
}
// ScoreComponentCollection StaticData::GetAllWeightsScoreComponentCollection() const {}
// in ScoreComponentCollection.h
void StaticData::SetExecPath(const std::string &path)
{
// NOT TESTED
size_t pos = path.rfind("/");
if (pos != string::npos) {
m_binPath = path.substr(0, pos);
}
VERBOSE(1,m_binPath << endl);
}
const string &StaticData::GetBinDirectory() const
{
return m_binPath;
}
float StaticData::GetWeightWordPenalty() const
{
float weightWP = GetWeight(&WordPenaltyProducer::Instance());
return weightWP;
}
void
StaticData::
InitializeForInput(ttasksptr const& ttask) const
{
const std::vector<FeatureFunction*> &producers
= FeatureFunction::GetFeatureFunctions();
for(size_t i=0; i<producers.size(); ++i) {
FeatureFunction &ff = *producers[i];
if (! IsFeatureFunctionIgnored(ff)) {
Timer iTime;
iTime.start();
ff.InitializeForInput(ttask);
VERBOSE(3,"InitializeForInput( " << ff.GetScoreProducerDescription()
<< " )" << "= " << iTime << endl);
}
}
}
void
StaticData::
CleanUpAfterSentenceProcessing(ttasksptr const& ttask) const
{
const std::vector<FeatureFunction*> &producers
= FeatureFunction::GetFeatureFunctions();
for(size_t i=0; i<producers.size(); ++i) {
FeatureFunction &ff = *producers[i];
if (! IsFeatureFunctionIgnored(ff)) {
ff.CleanUpAfterSentenceProcessing(ttask);
}
}
}
void StaticData::LoadFeatureFunctions()
{
const std::vector<FeatureFunction*> &ffs = FeatureFunction::GetFeatureFunctions();
std::vector<FeatureFunction*>::const_iterator iter;
for (iter = ffs.begin(); iter != ffs.end(); ++iter) {
FeatureFunction *ff = *iter;
bool doLoad = true;
if (ff->RequireSortingAfterSourceContext()) {
m_requireSortingAfterSourceContext = true;
}
if (dynamic_cast<PhraseDictionary*>(ff)) {
doLoad = false;
}
if (doLoad) {
VERBOSE(1, "Loading " << ff->GetScoreProducerDescription() << endl);
ff->Load(options());
}
}
const std::vector<PhraseDictionary*> &pts = PhraseDictionary::GetColl();
for (size_t i = 0; i < pts.size(); ++i) {
PhraseDictionary *pt = pts[i];
VERBOSE(1, "Loading " << pt->GetScoreProducerDescription() << endl);
pt->Load(options());
}
CheckLEGACYPT();
}
bool StaticData::CheckWeights() const
{
set<string> weightNames = m_parameter->GetWeightNames();
set<string> featureNames;
const std::vector<FeatureFunction*> &ffs = FeatureFunction::GetFeatureFunctions();
for (size_t i = 0; i < ffs.size(); ++i) {
const FeatureFunction &ff = *ffs[i];
const string &descr = ff.GetScoreProducerDescription();
featureNames.insert(descr);
set<string>::iterator iter = weightNames.find(descr);
if (iter == weightNames.end()) {
cerr << "Can't find weights for feature function " << descr << endl;
} else {
weightNames.erase(iter);
}
}
//sparse features
if (!weightNames.empty()) {
set<string>::iterator iter;
for (iter = weightNames.begin(); iter != weightNames.end(); ) {
string fname = (*iter).substr(0, (*iter).find("_"));
VERBOSE(1,fname << "\n");
if (featureNames.find(fname) != featureNames.end()) {
weightNames.erase(iter++);
} else {
++iter;
}
}
}
if (!weightNames.empty()) {
cerr << "The following weights have no feature function. "
<< "Maybe incorrectly spelt weights: ";
set<string>::iterator iter;
for (iter = weightNames.begin(); iter != weightNames.end(); ++iter) {
cerr << *iter << ",";
}
return false;
}
return true;
}
void StaticData::LoadSparseWeightsFromConfig()
{
set<string> featureNames;
const std::vector<FeatureFunction*> &ffs = FeatureFunction::GetFeatureFunctions();
for (size_t i = 0; i < ffs.size(); ++i) {
const FeatureFunction &ff = *ffs[i];
const string &descr = ff.GetScoreProducerDescription();
featureNames.insert(descr);
}
std::map<std::string, std::vector<float> > weights = m_parameter->GetAllWeights();
std::map<std::string, std::vector<float> >::iterator iter;
for (iter = weights.begin(); iter != weights.end(); ++iter) {
// this indicates that it is sparse feature
if (featureNames.find(iter->first) == featureNames.end()) {
UTIL_THROW_IF2(iter->second.size() != 1, "ERROR: only one weight per sparse feature allowed: " << iter->first);
m_allWeights.Assign(iter->first, iter->second[0]);
}
}
}
/**! Read in settings for alternative weights */
bool StaticData::LoadAlternateWeightSettings()
{
if (m_threadCount > 1) {
cerr << "ERROR: alternative weight settings currently not supported with multi-threading.";
return false;
}
vector<string> weightSpecification;
const PARAM_VEC *params = m_parameter->GetParam("alternate-weight-setting");
if (params && params->size()) {
weightSpecification = *params;
}
// get mapping from feature names to feature functions
map<string,FeatureFunction*> nameToFF;
const std::vector<FeatureFunction*> &ffs = FeatureFunction::GetFeatureFunctions();
for (size_t i = 0; i < ffs.size(); ++i) {
nameToFF[ ffs[i]->GetScoreProducerDescription() ] = ffs[i];
}
// copy main weight setting as default
m_weightSetting["default"] = new ScoreComponentCollection( m_allWeights );
// go through specification in config file
string currentId = "";
bool hasErrors = false;
for (size_t i=0; i<weightSpecification.size(); ++i) {
// identifier line (with optional additional specifications)
if (weightSpecification[i].find("id=") == 0) {
vector<string> tokens = Tokenize(weightSpecification[i]);
vector<string> args = Tokenize(tokens[0], "=");
currentId = args[1];
VERBOSE(1,"alternate weight setting " << currentId << endl);
UTIL_THROW_IF2(m_weightSetting.find(currentId) != m_weightSetting.end(),
"Duplicate alternate weight id: " << currentId);
m_weightSetting[ currentId ] = new ScoreComponentCollection;
// other specifications
for(size_t j=1; j<tokens.size(); j++) {
vector<string> args = Tokenize(tokens[j], "=");
// sparse weights
if (args[0] == "weight-file") {
if (args.size() != 2) {
std::cerr << "One argument should be supplied for weight-file";
return false;
}
ScoreComponentCollection extraWeights;
if (!extraWeights.Load(args[1])) {
std::cerr << "Unable to load weights from " << args[1];
return false;
}
m_weightSetting[ currentId ]->PlusEquals(extraWeights);
}
// ignore feature functions
else if (args[0] == "ignore-ff") {
set< string > *ffNameSet = new set< string >;
m_weightSettingIgnoreFF[ currentId ] = *ffNameSet;
vector<string> featureFunctionName = Tokenize(args[1], ",");
for(size_t k=0; k<featureFunctionName.size(); k++) {
// check if a valid nane
map<string,FeatureFunction*>::iterator ffLookUp = nameToFF.find(featureFunctionName[k]);
if (ffLookUp == nameToFF.end()) {
cerr << "ERROR: alternate weight setting " << currentId
<< " specifies to ignore feature function " << featureFunctionName[k]
<< " but there is no such feature function" << endl;
hasErrors = true;
} else {
m_weightSettingIgnoreFF[ currentId ].insert( featureFunctionName[k] );
}
}
}
}
}
// weight lines
else {
UTIL_THROW_IF2(currentId.empty(), "No alternative weights specified");
vector<string> tokens = Tokenize(weightSpecification[i]);
UTIL_THROW_IF2(tokens.size() < 2
, "Incorrect format for alternate weights: " << weightSpecification[i]);
// get name and weight values
string name = tokens[0];
name = name.substr(0, name.size() - 1); // remove trailing "="
vector<float> weights(tokens.size() - 1);
for (size_t i = 1; i < tokens.size(); ++i) {
float weight = Scan<float>(tokens[i]);
weights[i - 1] = weight;
}
// check if a valid nane
map<string,FeatureFunction*>::iterator ffLookUp = nameToFF.find(name);
if (ffLookUp == nameToFF.end()) {
cerr << "ERROR: alternate weight setting " << currentId
<< " specifies weight(s) for " << name
<< " but there is no such feature function" << endl;
hasErrors = true;
} else {
m_weightSetting[ currentId ]->Assign( nameToFF[name], weights);
}
}
}
UTIL_THROW_IF2(hasErrors, "Errors loading alternate weights");
return true;
}
void StaticData::NoCache()
{
bool noCache;
m_parameter->SetParameter(noCache, "no-cache", false );
if (noCache) {
const std::vector<PhraseDictionary*> &pts = PhraseDictionary::GetColl();
for (size_t i = 0; i < pts.size(); ++i) {
PhraseDictionary &pt = *pts[i];
pt.SetParameter("cache-size", "0");
}
}
}
std::map<std::string, std::string>
StaticData
::OverrideFeatureNames()
{
std::map<std::string, std::string> ret;
const PARAM_VEC *params = m_parameter->GetParam("feature-name-overwrite");
if (params && params->size()) {
UTIL_THROW_IF2(params->size() != 1, "Only provide 1 line in the section [feature-name-overwrite]");
vector<string> toks = Tokenize(params->at(0));
UTIL_THROW_IF2(toks.size() % 2 != 0, "Format of -feature-name-overwrite must be [old-name new-name]*");
for (size_t i = 0; i < toks.size(); i += 2) {
const string &oldName = toks[i];
const string &newName = toks[i+1];
ret[oldName] = newName;
}
}
// FIXME Does this make sense for F2S? Perhaps it should be changed once
// FIXME the pipeline uses RuleTable consistently.
SearchAlgorithm algo = m_options->search.algo;
if (algo == SyntaxS2T || algo == SyntaxT2S ||
algo == SyntaxT2S_SCFG || algo == SyntaxF2S) {
// Automatically override PhraseDictionary{Memory,Scope3}. This will
// have to change if the FF parameters diverge too much in the future,
// but for now it makes switching between the old and new decoders much
// more convenient.
ret["PhraseDictionaryMemory"] = "RuleTable";
ret["PhraseDictionaryScope3"] = "RuleTable";
}
return ret;
}
void StaticData::OverrideFeatures()
{
const PARAM_VEC *params = m_parameter->GetParam("feature-overwrite");
for (size_t i = 0; params && i < params->size(); ++i) {
const string &str = params->at(i);
vector<string> toks = Tokenize(str);
UTIL_THROW_IF2(toks.size() <= 1, "Incorrect format for feature override: " << str);
FeatureFunction &ff = FeatureFunction::FindFeatureFunction(toks[0]);
for (size_t j = 1; j < toks.size(); ++j) {
const string &keyValStr = toks[j];
vector<string> keyVal = Tokenize(keyValStr, "=");
UTIL_THROW_IF2(keyVal.size() != 2, "Incorrect format for parameter override: " << keyValStr);
VERBOSE(1, "Override " << ff.GetScoreProducerDescription() << " "
<< keyVal[0] << "=" << keyVal[1] << endl);
ff.SetParameter(keyVal[0], keyVal[1]);
}
}
}
void StaticData::CheckLEGACYPT()
{
const std::vector<PhraseDictionary*> &pts = PhraseDictionary::GetColl();
for (size_t i = 0; i < pts.size(); ++i) {
const PhraseDictionary *phraseDictionary = pts[i];
if (dynamic_cast<const PhraseDictionaryTreeAdaptor*>(phraseDictionary) != NULL) {
m_useLegacyPT = true;
return;
}
}
m_useLegacyPT = false;
}
void StaticData::ResetWeights(const std::string &denseWeights, const std::string &sparseFile)
{
m_allWeights = ScoreComponentCollection();
// dense weights
string name("");
vector<float> weights;
vector<string> toks = Tokenize(denseWeights);
for (size_t i = 0; i < toks.size(); ++i) {
const string &tok = toks[i];
if (ends_with(tok, "=")) {
// start of new feature
if (name != "") {
// save previous ff
const FeatureFunction &ff = FeatureFunction::FindFeatureFunction(name);
m_allWeights.Assign(&ff, weights);
weights.clear();
}
name = tok.substr(0, tok.size() - 1);
} else {
// a weight for curr ff
float weight = Scan<float>(toks[i]);
weights.push_back(weight);
}
}
const FeatureFunction &ff = FeatureFunction::FindFeatureFunction(name);
m_allWeights.Assign(&ff, weights);
// sparse weights
InputFileStream sparseStrme(sparseFile);
string line;
while (getline(sparseStrme, line)) {
vector<string> toks = Tokenize(line);
UTIL_THROW_IF2(toks.size() != 2, "Incorrect sparse weight format. Should be FFName_spareseName weight");
vector<string> names = Tokenize(toks[0], "_");
UTIL_THROW_IF2(names.size() != 2, "Incorrect sparse weight name. Should be FFName_spareseName");
const FeatureFunction &ff = FeatureFunction::FindFeatureFunction(names[0]);
m_allWeights.Assign(&ff, names[1], Scan<float>(toks[1]));
}
}
size_t StaticData::GetCoordSpace(string space) const
{
map<string const, size_t>::const_iterator m = m_coordSpaceMap.find(space);
if(m == m_coordSpaceMap.end()) {
return 0;
}
return m->second;
}
size_t StaticData::MapCoordSpace(string space)
{
map<string const, size_t>::const_iterator m = m_coordSpaceMap.find(space);
if (m != m_coordSpaceMap.end()) {
return m->second;
}
size_t id = m_coordSpaceNextID;
m_coordSpaceNextID += 1;
m_coordSpaceMap[space] = id;
return id;
}
} // namespace