mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-11-10 10:59:21 +03:00
357 lines
12 KiB
C++
357 lines
12 KiB
C++
// $Id$
|
|
|
|
/***********************************************************************
|
|
Moses - factored phrase-based language decoder
|
|
Copyright (C) 2006 University of Edinburgh
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
***********************************************************************/
|
|
|
|
#include <limits>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <sstream>
|
|
|
|
#include "moses/FF/FFState.h"
|
|
#include "Implementation.h"
|
|
#include "ChartState.h"
|
|
#include "moses/TypeDef.h"
|
|
#include "moses/Util.h"
|
|
#include "moses/Manager.h"
|
|
#include "moses/FactorCollection.h"
|
|
#include "moses/Phrase.h"
|
|
#include "moses/StaticData.h"
|
|
#include "moses/ChartManager.h"
|
|
#include "moses/ChartHypothesis.h"
|
|
#include "util/exception.hh"
|
|
|
|
using namespace std;
|
|
|
|
namespace Moses
|
|
{
|
|
LanguageModelImplementation::LanguageModelImplementation(const std::string &line)
|
|
:LanguageModel(line)
|
|
{
|
|
}
|
|
|
|
void LanguageModelImplementation::SetParameter(const std::string& key, const std::string& value)
|
|
{
|
|
if (key == "order") {
|
|
m_nGramOrder = Scan<size_t>(value);
|
|
} else if (key == "path") {
|
|
m_filePath = value;
|
|
} else {
|
|
LanguageModel::SetParameter(key, value);
|
|
}
|
|
|
|
}
|
|
|
|
void LanguageModelImplementation::ShiftOrPush(std::vector<const Word*> &contextFactor, const Word &word) const
|
|
{
|
|
if (contextFactor.size() < GetNGramOrder()) {
|
|
contextFactor.push_back(&word);
|
|
} else {
|
|
// shift
|
|
for (size_t currNGramOrder = 0 ; currNGramOrder < GetNGramOrder() - 1 ; currNGramOrder++) {
|
|
contextFactor[currNGramOrder] = contextFactor[currNGramOrder + 1];
|
|
}
|
|
contextFactor[GetNGramOrder() - 1] = &word;
|
|
}
|
|
}
|
|
|
|
LMResult LanguageModelImplementation::GetValueGivenState(
|
|
const std::vector<const Word*> &contextFactor,
|
|
FFState &state) const
|
|
{
|
|
return GetValueForgotState(contextFactor, state);
|
|
}
|
|
|
|
void LanguageModelImplementation::GetState(
|
|
const std::vector<const Word*> &contextFactor,
|
|
FFState &state) const
|
|
{
|
|
GetValueForgotState(contextFactor, state);
|
|
}
|
|
|
|
// Calculate score of a phrase.
|
|
void LanguageModelImplementation::CalcScore(const Phrase &phrase, float &fullScore, float &ngramScore, size_t &oovCount) const
|
|
{
|
|
fullScore = 0;
|
|
ngramScore = 0;
|
|
|
|
oovCount = 0;
|
|
|
|
size_t phraseSize = phrase.GetSize();
|
|
if (!phraseSize) return;
|
|
|
|
vector<const Word*> contextFactor;
|
|
contextFactor.reserve(GetNGramOrder());
|
|
std::auto_ptr<FFState> state(NewState((phrase.GetWord(0) == GetSentenceStartWord()) ?
|
|
GetBeginSentenceState() : GetNullContextState()));
|
|
size_t currPos = 0;
|
|
while (currPos < phraseSize) {
|
|
const Word &word = phrase.GetWord(currPos);
|
|
|
|
if (word.IsNonTerminal()) {
|
|
// do nothing. reset ngram. needed to score target phrases during pt loading in chart decoding
|
|
if (!contextFactor.empty()) {
|
|
// TODO: state operator= ?
|
|
state.reset(NewState(GetNullContextState()));
|
|
contextFactor.clear();
|
|
}
|
|
} else {
|
|
ShiftOrPush(contextFactor, word);
|
|
UTIL_THROW_IF2(contextFactor.size() > GetNGramOrder(),
|
|
"Can only calculate LM score of phrases up to the n-gram order");
|
|
|
|
if (word == GetSentenceStartWord()) {
|
|
// do nothing, don't include prob for <s> unigram
|
|
if (currPos != 0) {
|
|
UTIL_THROW2("Either your data contains <s> in a position other than the first word or your language model is missing <s>. Did you build your ARPA using IRSTLM and forget to run add-start-end.sh?");
|
|
}
|
|
} else {
|
|
LMResult result = GetValueGivenState(contextFactor, *state);
|
|
fullScore += result.score;
|
|
if (contextFactor.size() == GetNGramOrder())
|
|
ngramScore += result.score;
|
|
if (result.unknown) ++oovCount;
|
|
}
|
|
}
|
|
|
|
currPos++;
|
|
}
|
|
}
|
|
|
|
FFState *LanguageModelImplementation::EvaluateWhenApplied(const Hypothesis &hypo, const FFState *ps, ScoreComponentCollection *out) const
|
|
{
|
|
// In this function, we only compute the LM scores of n-grams that overlap a
|
|
// phrase boundary. Phrase-internal scores are taken directly from the
|
|
// translation option.
|
|
|
|
// In the case of unigram language models, there is no overlap, so we don't
|
|
// need to do anything.
|
|
if(GetNGramOrder() <= 1)
|
|
return NULL;
|
|
|
|
// Empty phrase added? nothing to be done
|
|
if (hypo.GetCurrTargetLength() == 0)
|
|
return ps ? NewState(ps) : NULL;
|
|
|
|
IFVERBOSE(2) {
|
|
hypo.GetManager().GetSentenceStats().StartTimeCalcLM();
|
|
}
|
|
|
|
const size_t currEndPos = hypo.GetCurrTargetWordsRange().GetEndPos();
|
|
const size_t startPos = hypo.GetCurrTargetWordsRange().GetStartPos();
|
|
|
|
// 1st n-gram
|
|
vector<const Word*> contextFactor(GetNGramOrder());
|
|
size_t index = 0;
|
|
for (int currPos = (int) startPos - (int) GetNGramOrder() + 1 ; currPos <= (int) startPos ; currPos++) {
|
|
if (currPos >= 0)
|
|
contextFactor[index++] = &hypo.GetWord(currPos);
|
|
else {
|
|
contextFactor[index++] = &GetSentenceStartWord();
|
|
}
|
|
}
|
|
FFState *res = NewState(ps);
|
|
float lmScore = ps ? GetValueGivenState(contextFactor, *res).score : GetValueForgotState(contextFactor, *res).score;
|
|
|
|
// main loop
|
|
size_t endPos = std::min(startPos + GetNGramOrder() - 2
|
|
, currEndPos);
|
|
for (size_t currPos = startPos + 1 ; currPos <= endPos ; currPos++) {
|
|
// shift all args down 1 place
|
|
for (size_t i = 0 ; i < GetNGramOrder() - 1 ; i++)
|
|
contextFactor[i] = contextFactor[i + 1];
|
|
|
|
// add last factor
|
|
contextFactor.back() = &hypo.GetWord(currPos);
|
|
|
|
lmScore += GetValueGivenState(contextFactor, *res).score;
|
|
}
|
|
|
|
// end of sentence
|
|
if (hypo.IsSourceCompleted()) {
|
|
const size_t size = hypo.GetSize();
|
|
contextFactor.back() = &GetSentenceEndWord();
|
|
|
|
for (size_t i = 0 ; i < GetNGramOrder() - 1 ; i ++) {
|
|
int currPos = (int)(size - GetNGramOrder() + i + 1);
|
|
if (currPos < 0)
|
|
contextFactor[i] = &GetSentenceStartWord();
|
|
else
|
|
contextFactor[i] = &hypo.GetWord((size_t)currPos);
|
|
}
|
|
lmScore += GetValueForgotState(contextFactor, *res).score;
|
|
} else {
|
|
if (endPos < currEndPos) {
|
|
//need to get the LM state (otherwise the last LM state is fine)
|
|
for (size_t currPos = endPos+1; currPos <= currEndPos; currPos++) {
|
|
for (size_t i = 0 ; i < GetNGramOrder() - 1 ; i++)
|
|
contextFactor[i] = contextFactor[i + 1];
|
|
contextFactor.back() = &hypo.GetWord(currPos);
|
|
}
|
|
GetState(contextFactor, *res);
|
|
}
|
|
}
|
|
if (OOVFeatureEnabled()) {
|
|
vector<float> scores(2);
|
|
scores[0] = lmScore;
|
|
scores[1] = 0;
|
|
out->PlusEquals(this, scores);
|
|
} else {
|
|
out->PlusEquals(this, lmScore);
|
|
}
|
|
|
|
IFVERBOSE(2) {
|
|
hypo.GetManager().GetSentenceStats().StopTimeCalcLM();
|
|
}
|
|
return res;
|
|
}
|
|
|
|
FFState* LanguageModelImplementation::EvaluateWhenApplied(const ChartHypothesis& hypo, int featureID, ScoreComponentCollection* out) const
|
|
{
|
|
LanguageModelChartState *ret = new LanguageModelChartState(hypo, featureID, GetNGramOrder());
|
|
// data structure for factored context phrase (history and predicted word)
|
|
vector<const Word*> contextFactor;
|
|
contextFactor.reserve(GetNGramOrder());
|
|
|
|
// initialize language model context state
|
|
FFState *lmState = NewState( GetNullContextState() );
|
|
|
|
// initial language model scores
|
|
float prefixScore = 0.0; // not yet final for initial words (lack context)
|
|
float finalizedScore = 0.0; // finalized, has sufficient context
|
|
|
|
// get index map for underlying hypotheses
|
|
const AlignmentInfo::NonTermIndexMap &nonTermIndexMap =
|
|
hypo.GetCurrTargetPhrase().GetAlignNonTerm().GetNonTermIndexMap();
|
|
|
|
// loop over rule
|
|
for (size_t phrasePos = 0, wordPos = 0;
|
|
phrasePos < hypo.GetCurrTargetPhrase().GetSize();
|
|
phrasePos++) {
|
|
// consult rule for either word or non-terminal
|
|
const Word &word = hypo.GetCurrTargetPhrase().GetWord(phrasePos);
|
|
|
|
// regular word
|
|
if (!word.IsNonTerminal()) {
|
|
ShiftOrPush(contextFactor, word);
|
|
|
|
// beginning of sentence symbol <s>? -> just update state
|
|
if (word == GetSentenceStartWord()) {
|
|
UTIL_THROW_IF2(phrasePos != 0,
|
|
"Sentence start symbol must be at the beginning of sentence");
|
|
delete lmState;
|
|
lmState = NewState( GetBeginSentenceState() );
|
|
}
|
|
// score a regular word added by the rule
|
|
else {
|
|
updateChartScore( &prefixScore, &finalizedScore, GetValueGivenState(contextFactor, *lmState).score, ++wordPos );
|
|
}
|
|
}
|
|
|
|
// non-terminal, add phrase from underlying hypothesis
|
|
else {
|
|
// look up underlying hypothesis
|
|
size_t nonTermIndex = nonTermIndexMap[phrasePos];
|
|
const ChartHypothesis *prevHypo = hypo.GetPrevHypo(nonTermIndex);
|
|
|
|
const LanguageModelChartState* prevState =
|
|
static_cast<const LanguageModelChartState*>(prevHypo->GetFFState(featureID));
|
|
|
|
size_t subPhraseLength = prevState->GetNumTargetTerminals();
|
|
|
|
// special case: rule starts with non-terminal -> copy everything
|
|
if (phrasePos == 0) {
|
|
|
|
// get prefixScore and finalizedScore
|
|
prefixScore = prevState->GetPrefixScore();
|
|
finalizedScore = prevHypo->GetScoreBreakdown().GetScoresForProducer(this)[0] - prefixScore;
|
|
|
|
// get language model state
|
|
delete lmState;
|
|
lmState = NewState( prevState->GetRightContext() );
|
|
|
|
// push suffix
|
|
int suffixPos = prevState->GetSuffix().GetSize() - (GetNGramOrder()-1);
|
|
if (suffixPos < 0) suffixPos = 0; // push all words if less than order
|
|
for(; (size_t)suffixPos < prevState->GetSuffix().GetSize(); suffixPos++) {
|
|
const Word &word = prevState->GetSuffix().GetWord(suffixPos);
|
|
ShiftOrPush(contextFactor, word);
|
|
wordPos++;
|
|
}
|
|
}
|
|
|
|
// internal non-terminal
|
|
else {
|
|
// score its prefix
|
|
for(size_t prefixPos = 0;
|
|
prefixPos < GetNGramOrder()-1 // up to LM order window
|
|
&& prefixPos < subPhraseLength; // up to length
|
|
prefixPos++) {
|
|
const Word &word = prevState->GetPrefix().GetWord(prefixPos);
|
|
ShiftOrPush(contextFactor, word);
|
|
updateChartScore( &prefixScore, &finalizedScore, GetValueGivenState(contextFactor, *lmState).score, ++wordPos );
|
|
}
|
|
|
|
// check if we are dealing with a large sub-phrase
|
|
if (subPhraseLength > GetNGramOrder() - 1) {
|
|
// add its finalized language model score
|
|
finalizedScore +=
|
|
prevHypo->GetScoreBreakdown().GetScoresForProducer(this)[0] // full score
|
|
- prevState->GetPrefixScore(); // - prefix score
|
|
|
|
// copy language model state
|
|
delete lmState;
|
|
lmState = NewState( prevState->GetRightContext() );
|
|
|
|
// push its suffix
|
|
size_t remainingWords = subPhraseLength - (GetNGramOrder()-1);
|
|
if (remainingWords > GetNGramOrder()-1) {
|
|
// only what is needed for the history window
|
|
remainingWords = GetNGramOrder()-1;
|
|
}
|
|
for(size_t suffixPos = prevState->GetSuffix().GetSize() - remainingWords;
|
|
suffixPos < prevState->GetSuffix().GetSize();
|
|
suffixPos++) {
|
|
const Word &word = prevState->GetSuffix().GetWord(suffixPos);
|
|
ShiftOrPush(contextFactor, word);
|
|
}
|
|
wordPos += subPhraseLength;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// assign combined score to score breakdown
|
|
out->Assign(this, prefixScore + finalizedScore);
|
|
|
|
ret->Set(prefixScore, lmState);
|
|
return ret;
|
|
}
|
|
|
|
void LanguageModelImplementation::updateChartScore(float *prefixScore, float *finalizedScore, float score, size_t wordPos) const
|
|
{
|
|
if (wordPos < GetNGramOrder()) {
|
|
*prefixScore += score;
|
|
} else {
|
|
*finalizedScore += score;
|
|
}
|
|
}
|
|
|
|
}
|