mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-11-13 10:40:52 +03:00
2103 lines
79 KiB
C++
2103 lines
79 KiB
C++
// $Id$
|
|
// vim:tabstop=2
|
|
|
|
/***********************************************************************
|
|
Moses - factored phrase-based language decoder
|
|
Copyright (C) 2006 University of Edinburgh
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
***********************************************************************/
|
|
|
|
#include <string>
|
|
#include "util/check.hh"
|
|
#include "moses/TranslationModel/PhraseDictionaryMemory.h"
|
|
#include "DecodeStepTranslation.h"
|
|
#include "DecodeStepGeneration.h"
|
|
#include "GenerationDictionary.h"
|
|
#include "DummyScoreProducers.h"
|
|
#include "StaticData.h"
|
|
#include "Util.h"
|
|
#include "FactorCollection.h"
|
|
#include "Timer.h"
|
|
#include "LM/Factory.h"
|
|
#include "LexicalReordering.h"
|
|
#include "GlobalLexicalModel.h"
|
|
#include "GlobalLexicalModelUnlimited.h"
|
|
#include "SentenceStats.h"
|
|
#include "PhraseBoundaryFeature.h"
|
|
#include "moses/TranslationModel/PhraseDictionary.h"
|
|
#include "SparsePhraseDictionaryFeature.h"
|
|
#include "PhrasePairFeature.h"
|
|
#include "PhraseLengthFeature.h"
|
|
#include "TargetWordInsertionFeature.h"
|
|
#include "SourceWordDeletionFeature.h"
|
|
#include "WordTranslationFeature.h"
|
|
#include "UserMessage.h"
|
|
#include "TranslationOption.h"
|
|
#include "TargetBigramFeature.h"
|
|
#include "TargetNgramFeature.h"
|
|
#include "DecodeGraph.h"
|
|
#include "InputFileStream.h"
|
|
#include "BleuScoreFeature.h"
|
|
#include "ScoreComponentCollection.h"
|
|
|
|
#ifdef HAVE_SYNLM
|
|
#include "SyntacticLanguageModel.h"
|
|
#endif
|
|
|
|
#ifdef WITH_THREADS
|
|
#include <boost/thread.hpp>
|
|
#endif
|
|
|
|
using namespace std;
|
|
|
|
namespace Moses
|
|
{
|
|
static size_t CalcMax(size_t x, const vector<size_t>& y)
|
|
{
|
|
size_t max = x;
|
|
for (vector<size_t>::const_iterator i=y.begin(); i != y.end(); ++i)
|
|
if (*i > max) max = *i;
|
|
return max;
|
|
}
|
|
|
|
static size_t CalcMax(size_t x, const vector<size_t>& y, const vector<size_t>& z)
|
|
{
|
|
size_t max = x;
|
|
for (vector<size_t>::const_iterator i=y.begin(); i != y.end(); ++i)
|
|
if (*i > max) max = *i;
|
|
for (vector<size_t>::const_iterator i=z.begin(); i != z.end(); ++i)
|
|
if (*i > max) max = *i;
|
|
return max;
|
|
}
|
|
|
|
StaticData StaticData::s_instance;
|
|
|
|
StaticData::StaticData()
|
|
:m_targetBigramFeature(NULL)
|
|
,m_phraseBoundaryFeature(NULL)
|
|
,m_phraseLengthFeature(NULL)
|
|
,m_targetWordInsertionFeature(NULL)
|
|
,m_sourceWordDeletionFeature(NULL)
|
|
,m_numLinkParams(1)
|
|
,m_fLMsLoaded(false)
|
|
,m_sourceStartPosMattersForRecombination(false)
|
|
,m_inputType(SentenceInput)
|
|
,m_numInputScores(0)
|
|
,m_bleuScoreFeature(NULL)
|
|
,m_detailedTranslationReportingFilePath()
|
|
,m_onlyDistinctNBest(false)
|
|
,m_factorDelimiter("|") // default delimiter between factors
|
|
,m_lmEnableOOVFeature(false)
|
|
,m_isAlwaysCreateDirectTranslationOption(false)
|
|
,m_needAlignmentInfo(false)
|
|
{
|
|
m_maxFactorIdx[0] = 0; // source side
|
|
m_maxFactorIdx[1] = 0; // target side
|
|
|
|
m_xmlBrackets.first="<";
|
|
m_xmlBrackets.second=">";
|
|
|
|
// memory pools
|
|
Phrase::InitializeMemPool();
|
|
}
|
|
|
|
bool StaticData::LoadDataStatic(Parameter *parameter, const std::string &execPath) {
|
|
s_instance.SetExecPath(execPath);
|
|
return s_instance.LoadData(parameter);
|
|
}
|
|
|
|
bool StaticData::LoadData(Parameter *parameter)
|
|
{
|
|
ResetUserTime();
|
|
m_parameter = parameter;
|
|
|
|
// verbose level
|
|
m_verboseLevel = 1;
|
|
if (m_parameter->GetParam("verbose").size() == 1) {
|
|
m_verboseLevel = Scan<size_t>( m_parameter->GetParam("verbose")[0]);
|
|
}
|
|
|
|
m_parsingAlgorithm = (m_parameter->GetParam("parsing-algorithm").size() > 0) ?
|
|
(ParsingAlgorithm) Scan<size_t>(m_parameter->GetParam("parsing-algorithm")[0]) : ParseCYKPlus;
|
|
|
|
// to cube or not to cube
|
|
m_searchAlgorithm = (m_parameter->GetParam("search-algorithm").size() > 0) ?
|
|
(SearchAlgorithm) Scan<size_t>(m_parameter->GetParam("search-algorithm")[0]) : Normal;
|
|
|
|
if (IsChart())
|
|
LoadChartDecodingParameters();
|
|
else
|
|
LoadPhraseBasedParameters();
|
|
|
|
// input type has to be specified BEFORE loading the phrase tables!
|
|
if(m_parameter->GetParam("inputtype").size())
|
|
m_inputType= (InputTypeEnum) Scan<int>(m_parameter->GetParam("inputtype")[0]);
|
|
std::string s_it = "text input";
|
|
if (m_inputType == 1) {
|
|
s_it = "confusion net";
|
|
}
|
|
if (m_inputType == 2) {
|
|
s_it = "word lattice";
|
|
}
|
|
VERBOSE(2,"input type is: "<<s_it<<"\n");
|
|
|
|
if(m_parameter->GetParam("recover-input-path").size()) {
|
|
m_recoverPath = Scan<bool>(m_parameter->GetParam("recover-input-path")[0]);
|
|
if (m_recoverPath && m_inputType == SentenceInput) {
|
|
TRACE_ERR("--recover-input-path should only be used with confusion net or word lattice input!\n");
|
|
m_recoverPath = false;
|
|
}
|
|
}
|
|
|
|
if(m_parameter->GetParam("sort-word-alignment").size()) {
|
|
m_wordAlignmentSort = (WordAlignmentSort) Scan<size_t>(m_parameter->GetParam("sort-word-alignment")[0]);
|
|
}
|
|
|
|
// factor delimiter
|
|
if (m_parameter->GetParam("factor-delimiter").size() > 0) {
|
|
m_factorDelimiter = m_parameter->GetParam("factor-delimiter")[0];
|
|
}
|
|
|
|
SetBooleanParameter( &m_continuePartialTranslation, "continue-partial-translation", false );
|
|
SetBooleanParameter( &m_outputHypoScore, "output-hypo-score", false );
|
|
|
|
//word-to-word alignment
|
|
SetBooleanParameter( &m_PrintAlignmentInfoNbest, "print-alignment-info-in-n-best", false );
|
|
if (m_PrintAlignmentInfoNbest) {
|
|
m_needAlignmentInfo = true;
|
|
}
|
|
|
|
if (m_parameter->GetParam("alignment-output-file").size() > 0) {
|
|
m_alignmentOutputFile = Scan<std::string>(m_parameter->GetParam("alignment-output-file")[0]);
|
|
m_needAlignmentInfo = true;
|
|
}
|
|
|
|
// n-best
|
|
if (m_parameter->GetParam("n-best-list").size() >= 2) {
|
|
m_nBestFilePath = m_parameter->GetParam("n-best-list")[0];
|
|
m_nBestSize = Scan<size_t>( m_parameter->GetParam("n-best-list")[1] );
|
|
m_onlyDistinctNBest=(m_parameter->GetParam("n-best-list").size()>2 && m_parameter->GetParam("n-best-list")[2]=="distinct");
|
|
} else if (m_parameter->GetParam("n-best-list").size() == 1) {
|
|
UserMessage::Add(string("wrong format for switch -n-best-list file size"));
|
|
return false;
|
|
} else {
|
|
m_nBestSize = 0;
|
|
}
|
|
if (m_parameter->GetParam("n-best-factor").size() > 0) {
|
|
m_nBestFactor = Scan<size_t>( m_parameter->GetParam("n-best-factor")[0]);
|
|
} else {
|
|
m_nBestFactor = 20;
|
|
}
|
|
|
|
// explicit setting of distinct nbest
|
|
SetBooleanParameter( &m_onlyDistinctNBest, "distinct-nbest", false);
|
|
|
|
//lattice samples
|
|
if (m_parameter->GetParam("lattice-samples").size() ==2 ) {
|
|
m_latticeSamplesFilePath = m_parameter->GetParam("lattice-samples")[0];
|
|
m_latticeSamplesSize = Scan<size_t>(m_parameter->GetParam("lattice-samples")[1]);
|
|
} else if (m_parameter->GetParam("lattice-samples").size() != 0 ) {
|
|
UserMessage::Add(string("wrong format for switch -lattice-samples file size"));
|
|
return false;
|
|
} else {
|
|
m_latticeSamplesSize = 0;
|
|
}
|
|
|
|
// word graph
|
|
if (m_parameter->GetParam("output-word-graph").size() == 2)
|
|
m_outputWordGraph = true;
|
|
else
|
|
m_outputWordGraph = false;
|
|
|
|
// search graph
|
|
if (m_parameter->GetParam("output-search-graph").size() > 0) {
|
|
if (m_parameter->GetParam("output-search-graph").size() != 1) {
|
|
UserMessage::Add(string("ERROR: wrong format for switch -output-search-graph file"));
|
|
return false;
|
|
}
|
|
m_outputSearchGraph = true;
|
|
}
|
|
// ... in extended format
|
|
else if (m_parameter->GetParam("output-search-graph-extended").size() > 0) {
|
|
if (m_parameter->GetParam("output-search-graph-extended").size() != 1) {
|
|
UserMessage::Add(string("ERROR: wrong format for switch -output-search-graph-extended file"));
|
|
return false;
|
|
}
|
|
m_outputSearchGraph = true;
|
|
m_outputSearchGraphExtended = true;
|
|
} else
|
|
m_outputSearchGraph = false;
|
|
#ifdef HAVE_PROTOBUF
|
|
if (m_parameter->GetParam("output-search-graph-pb").size() > 0) {
|
|
if (m_parameter->GetParam("output-search-graph-pb").size() != 1) {
|
|
UserMessage::Add(string("ERROR: wrong format for switch -output-search-graph-pb path"));
|
|
return false;
|
|
}
|
|
m_outputSearchGraphPB = true;
|
|
} else
|
|
m_outputSearchGraphPB = false;
|
|
#endif
|
|
SetBooleanParameter( &m_unprunedSearchGraph, "unpruned-search-graph", false );
|
|
SetBooleanParameter( &m_includeLHSInSearchGraph, "include-lhs-in-search-graph", false );
|
|
|
|
if (m_parameter->isParamSpecified("output-unknowns")) {
|
|
|
|
if (m_parameter->GetParam("output-unknowns").size() == 1) {
|
|
m_outputUnknownsFile =Scan<string>(m_parameter->GetParam("output-unknowns")[0]);
|
|
} else {
|
|
UserMessage::Add(string("need to specify exactly one file name for unknowns"));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// include feature names in the n-best list
|
|
SetBooleanParameter( &m_labeledNBestList, "labeled-n-best-list", true );
|
|
|
|
// include word alignment in the n-best list
|
|
SetBooleanParameter( &m_nBestIncludesSegmentation, "include-segmentation-in-n-best", false );
|
|
|
|
// printing source phrase spans
|
|
SetBooleanParameter( &m_reportSegmentation, "report-segmentation", false );
|
|
|
|
// print all factors of output translations
|
|
SetBooleanParameter( &m_reportAllFactors, "report-all-factors", false );
|
|
|
|
// print all factors of output translations
|
|
SetBooleanParameter( &m_reportAllFactorsNBest, "report-all-factors-in-n-best", false );
|
|
|
|
// caching of translation options
|
|
if (m_inputType == SentenceInput) {
|
|
SetBooleanParameter( &m_useTransOptCache, "use-persistent-cache", true );
|
|
m_transOptCacheMaxSize = (m_parameter->GetParam("persistent-cache-size").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("persistent-cache-size")[0]) : DEFAULT_MAX_TRANS_OPT_CACHE_SIZE;
|
|
} else {
|
|
m_useTransOptCache = false;
|
|
}
|
|
|
|
//input factors
|
|
const vector<string> &inputFactorVector = m_parameter->GetParam("input-factors");
|
|
for(size_t i=0; i<inputFactorVector.size(); i++) {
|
|
m_inputFactorOrder.push_back(Scan<FactorType>(inputFactorVector[i]));
|
|
}
|
|
if(m_inputFactorOrder.empty()) {
|
|
UserMessage::Add(string("no input factor specified in config file"));
|
|
return false;
|
|
}
|
|
|
|
//output factors
|
|
const vector<string> &outputFactorVector = m_parameter->GetParam("output-factors");
|
|
for(size_t i=0; i<outputFactorVector.size(); i++) {
|
|
m_outputFactorOrder.push_back(Scan<FactorType>(outputFactorVector[i]));
|
|
}
|
|
if(m_outputFactorOrder.empty()) {
|
|
// default. output factor 0
|
|
m_outputFactorOrder.push_back(0);
|
|
}
|
|
|
|
//source word deletion
|
|
SetBooleanParameter( &m_wordDeletionEnabled, "phrase-drop-allowed", false );
|
|
|
|
//Disable discarding
|
|
SetBooleanParameter(&m_disableDiscarding, "disable-discarding", false);
|
|
|
|
//Print All Derivations
|
|
SetBooleanParameter( &m_printAllDerivations , "print-all-derivations", false );
|
|
|
|
// additional output
|
|
if (m_parameter->isParamSpecified("translation-details")) {
|
|
const vector<string> &args = m_parameter->GetParam("translation-details");
|
|
if (args.size() == 1) {
|
|
m_detailedTranslationReportingFilePath = args[0];
|
|
} else {
|
|
UserMessage::Add(string("the translation-details option requires exactly one filename argument"));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// word penalties
|
|
for (size_t i = 0; i < m_parameter->GetParam("weight-w").size(); ++i) {
|
|
float weightWordPenalty = Scan<float>( m_parameter->GetParam("weight-w")[i] );
|
|
m_wordPenaltyProducers.push_back(new WordPenaltyProducer());
|
|
SetWeight(m_wordPenaltyProducers.back(), weightWordPenalty);
|
|
}
|
|
|
|
float weightUnknownWord = (m_parameter->GetParam("weight-u").size() > 0) ? Scan<float>(m_parameter->GetParam("weight-u")[0]) : 1;
|
|
m_unknownWordPenaltyProducer = new UnknownWordPenaltyProducer();
|
|
SetWeight(m_unknownWordPenaltyProducer, weightUnknownWord);
|
|
|
|
// reordering constraints
|
|
m_maxDistortion = (m_parameter->GetParam("distortion-limit").size() > 0) ?
|
|
Scan<int>(m_parameter->GetParam("distortion-limit")[0])
|
|
: -1;
|
|
SetBooleanParameter( &m_reorderingConstraint, "monotone-at-punctuation", false );
|
|
|
|
// settings for pruning
|
|
m_maxHypoStackSize = (m_parameter->GetParam("stack").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("stack")[0]) : DEFAULT_MAX_HYPOSTACK_SIZE;
|
|
|
|
m_minHypoStackDiversity = 0;
|
|
if (m_parameter->GetParam("stack-diversity").size() > 0) {
|
|
if (m_maxDistortion > 15) {
|
|
UserMessage::Add("stack diversity > 0 is not allowed for distortion limits larger than 15");
|
|
return false;
|
|
}
|
|
if (m_inputType == WordLatticeInput) {
|
|
UserMessage::Add("stack diversity > 0 is not allowed for lattice input");
|
|
return false;
|
|
}
|
|
m_minHypoStackDiversity = Scan<size_t>(m_parameter->GetParam("stack-diversity")[0]);
|
|
}
|
|
|
|
m_beamWidth = (m_parameter->GetParam("beam-threshold").size() > 0) ?
|
|
TransformScore(Scan<float>(m_parameter->GetParam("beam-threshold")[0]))
|
|
: TransformScore(DEFAULT_BEAM_WIDTH);
|
|
m_earlyDiscardingThreshold = (m_parameter->GetParam("early-discarding-threshold").size() > 0) ?
|
|
TransformScore(Scan<float>(m_parameter->GetParam("early-discarding-threshold")[0]))
|
|
: TransformScore(DEFAULT_EARLY_DISCARDING_THRESHOLD);
|
|
m_translationOptionThreshold = (m_parameter->GetParam("translation-option-threshold").size() > 0) ?
|
|
TransformScore(Scan<float>(m_parameter->GetParam("translation-option-threshold")[0]))
|
|
: TransformScore(DEFAULT_TRANSLATION_OPTION_THRESHOLD);
|
|
|
|
m_maxNoTransOptPerCoverage = (m_parameter->GetParam("max-trans-opt-per-coverage").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("max-trans-opt-per-coverage")[0]) : DEFAULT_MAX_TRANS_OPT_SIZE;
|
|
|
|
m_maxNoPartTransOpt = (m_parameter->GetParam("max-partial-trans-opt").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("max-partial-trans-opt")[0]) : DEFAULT_MAX_PART_TRANS_OPT_SIZE;
|
|
|
|
m_maxPhraseLength = (m_parameter->GetParam("max-phrase-length").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("max-phrase-length")[0]) : DEFAULT_MAX_PHRASE_LENGTH;
|
|
|
|
m_cubePruningPopLimit = (m_parameter->GetParam("cube-pruning-pop-limit").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("cube-pruning-pop-limit")[0]) : DEFAULT_CUBE_PRUNING_POP_LIMIT;
|
|
|
|
m_cubePruningDiversity = (m_parameter->GetParam("cube-pruning-diversity").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("cube-pruning-diversity")[0]) : DEFAULT_CUBE_PRUNING_DIVERSITY;
|
|
|
|
SetBooleanParameter(&m_cubePruningLazyScoring, "cube-pruning-lazy-scoring", false);
|
|
|
|
// early distortion cost
|
|
SetBooleanParameter( &m_useEarlyDistortionCost, "early-distortion-cost", false );
|
|
|
|
// unknown word processing
|
|
SetBooleanParameter( &m_dropUnknown, "drop-unknown", false );
|
|
|
|
SetBooleanParameter( &m_lmEnableOOVFeature, "lmodel-oov-feature", false);
|
|
|
|
// minimum Bayes risk decoding
|
|
SetBooleanParameter( &m_mbr, "minimum-bayes-risk", false );
|
|
m_mbrSize = (m_parameter->GetParam("mbr-size").size() > 0) ?
|
|
Scan<size_t>(m_parameter->GetParam("mbr-size")[0]) : 200;
|
|
m_mbrScale = (m_parameter->GetParam("mbr-scale").size() > 0) ?
|
|
Scan<float>(m_parameter->GetParam("mbr-scale")[0]) : 1.0f;
|
|
|
|
//lattice mbr
|
|
SetBooleanParameter( &m_useLatticeMBR, "lminimum-bayes-risk", false );
|
|
if (m_useLatticeMBR && m_mbr) {
|
|
cerr << "Errror: Cannot use both n-best mbr and lattice mbr together" << endl;
|
|
exit(1);
|
|
}
|
|
|
|
//mira training
|
|
SetBooleanParameter( &m_mira, "mira", false );
|
|
|
|
if (m_useLatticeMBR) m_mbr = true;
|
|
|
|
m_lmbrPruning = (m_parameter->GetParam("lmbr-pruning-factor").size() > 0) ?
|
|
Scan<size_t>(m_parameter->GetParam("lmbr-pruning-factor")[0]) : 30;
|
|
m_lmbrThetas = Scan<float>(m_parameter->GetParam("lmbr-thetas"));
|
|
SetBooleanParameter( &m_useLatticeHypSetForLatticeMBR, "lattice-hypo-set", false );
|
|
m_lmbrPrecision = (m_parameter->GetParam("lmbr-p").size() > 0) ?
|
|
Scan<float>(m_parameter->GetParam("lmbr-p")[0]) : 0.8f;
|
|
m_lmbrPRatio = (m_parameter->GetParam("lmbr-r").size() > 0) ?
|
|
Scan<float>(m_parameter->GetParam("lmbr-r")[0]) : 0.6f;
|
|
m_lmbrMapWeight = (m_parameter->GetParam("lmbr-map-weight").size() >0) ?
|
|
Scan<float>(m_parameter->GetParam("lmbr-map-weight")[0]) : 0.0f;
|
|
|
|
//consensus decoding
|
|
SetBooleanParameter( &m_useConsensusDecoding, "consensus-decoding", false );
|
|
if (m_useConsensusDecoding && m_mbr) {
|
|
cerr<< "Error: Cannot use consensus decoding together with mbr" << endl;
|
|
exit(1);
|
|
}
|
|
if (m_useConsensusDecoding) m_mbr=true;
|
|
|
|
// Compact phrase table and reordering model
|
|
SetBooleanParameter( &m_minphrMemory, "minphr-memory", false );
|
|
SetBooleanParameter( &m_minlexrMemory, "minlexr-memory", false );
|
|
|
|
m_timeout_threshold = (m_parameter->GetParam("time-out").size() > 0) ?
|
|
Scan<size_t>(m_parameter->GetParam("time-out")[0]) : -1;
|
|
m_timeout = (GetTimeoutThreshold() == (size_t)-1) ? false : true;
|
|
|
|
|
|
m_lmcache_cleanup_threshold = (m_parameter->GetParam("clean-lm-cache").size() > 0) ?
|
|
Scan<size_t>(m_parameter->GetParam("clean-lm-cache")[0]) : 1;
|
|
|
|
m_threadCount = 1;
|
|
const std::vector<std::string> &threadInfo = m_parameter->GetParam("threads");
|
|
if (!threadInfo.empty()) {
|
|
if (threadInfo[0] == "all") {
|
|
#ifdef WITH_THREADS
|
|
m_threadCount = boost::thread::hardware_concurrency();
|
|
if (!m_threadCount) {
|
|
UserMessage::Add("-threads all specified but Boost doesn't know how many cores there are");
|
|
return false;
|
|
}
|
|
#else
|
|
UserMessage::Add("-threads all specified but moses not built with thread support");
|
|
return false;
|
|
#endif
|
|
} else {
|
|
m_threadCount = Scan<int>(threadInfo[0]);
|
|
if (m_threadCount < 1) {
|
|
UserMessage::Add("Specify at least one thread.");
|
|
return false;
|
|
}
|
|
#ifndef WITH_THREADS
|
|
if (m_threadCount > 1) {
|
|
UserMessage::Add(std::string("Error: Thread count of ") + threadInfo[0] + " but moses not built with thread support");
|
|
return false;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
m_startTranslationId = (m_parameter->GetParam("start-translation-id").size() > 0) ?
|
|
Scan<long>(m_parameter->GetParam("start-translation-id")[0]) : 0;
|
|
|
|
// Read in constraint decoding file, if provided
|
|
if(m_parameter->GetParam("constraint").size()) {
|
|
if (m_parameter->GetParam("search-algorithm").size() > 0
|
|
&& Scan<size_t>(m_parameter->GetParam("search-algorithm")[0]) != 0) {
|
|
cerr << "Can use -constraint only with stack-based search (-search-algorithm 0)" << endl;
|
|
exit(1);
|
|
}
|
|
m_constraintFileName = m_parameter->GetParam("constraint")[0];
|
|
|
|
InputFileStream constraintFile(m_constraintFileName);
|
|
|
|
std::string line;
|
|
|
|
long sentenceID = GetStartTranslationId() - 1;
|
|
while (getline(constraintFile, line)) {
|
|
vector<string> vecStr = Tokenize(line, "\t");
|
|
|
|
if (vecStr.size() == 1) {
|
|
sentenceID++;
|
|
Phrase phrase(0);
|
|
phrase.CreateFromString(GetOutputFactorOrder(), vecStr[0], GetFactorDelimiter());
|
|
m_constraints.insert(make_pair(sentenceID,phrase));
|
|
} else if (vecStr.size() == 2) {
|
|
sentenceID = Scan<long>(vecStr[0]);
|
|
Phrase phrase(0);
|
|
phrase.CreateFromString(GetOutputFactorOrder(), vecStr[1], GetFactorDelimiter());
|
|
m_constraints.insert(make_pair(sentenceID,phrase));
|
|
} else {
|
|
CHECK(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// use of xml in input
|
|
if (m_parameter->GetParam("xml-input").size() == 0) m_xmlInputType = XmlPassThrough;
|
|
else if (m_parameter->GetParam("xml-input")[0]=="exclusive") m_xmlInputType = XmlExclusive;
|
|
else if (m_parameter->GetParam("xml-input")[0]=="inclusive") m_xmlInputType = XmlInclusive;
|
|
else if (m_parameter->GetParam("xml-input")[0]=="ignore") m_xmlInputType = XmlIgnore;
|
|
else if (m_parameter->GetParam("xml-input")[0]=="pass-through") m_xmlInputType = XmlPassThrough;
|
|
else {
|
|
UserMessage::Add("invalid xml-input value, must be pass-through, exclusive, inclusive, or ignore");
|
|
return false;
|
|
}
|
|
|
|
// specify XML tags opening and closing brackets for XML option
|
|
if (m_parameter->GetParam("xml-brackets").size() > 0) {
|
|
std::vector<std::string> brackets = Tokenize(m_parameter->GetParam("xml-brackets")[0]);
|
|
if(brackets.size()!=2) {
|
|
cerr << "invalid xml-brackets value, must specify exactly 2 blank-delimited strings for XML tags opening and closing brackets" << endl;
|
|
exit(1);
|
|
}
|
|
m_xmlBrackets.first= brackets[0];
|
|
m_xmlBrackets.second=brackets[1];
|
|
cerr << "XML tags opening and closing brackets for XML input are: " << m_xmlBrackets.first << " and " << m_xmlBrackets.second << endl;
|
|
}
|
|
|
|
#ifdef HAVE_SYNLM
|
|
if (m_parameter->GetParam("slmodel-file").size() > 0) {
|
|
if (!LoadSyntacticLanguageModel()) return false;
|
|
}
|
|
#endif
|
|
|
|
if (!LoadLexicalReorderingModel()) return false;
|
|
if (!LoadLanguageModels()) return false;
|
|
if (!LoadGenerationTables()) return false;
|
|
if (!LoadPhraseTables()) return false;
|
|
if (!LoadGlobalLexicalModel()) return false;
|
|
if (!LoadGlobalLexicalModelUnlimited()) return false;
|
|
if (!LoadDecodeGraphs()) return false;
|
|
if (!LoadReferences()) return false;
|
|
if (!LoadDiscrimLMFeature()) return false;
|
|
if (!LoadPhrasePairFeature()) return false;
|
|
if (!LoadPhraseBoundaryFeature()) return false;
|
|
if (!LoadPhraseLengthFeature()) return false;
|
|
if (!LoadTargetWordInsertionFeature()) return false;
|
|
if (!LoadSourceWordDeletionFeature()) return false;
|
|
if (!LoadWordTranslationFeature()) return false;
|
|
|
|
// report individual sparse features in n-best list
|
|
if (m_parameter->GetParam("report-sparse-features").size() > 0) {
|
|
for(size_t i=0; i<m_parameter->GetParam("report-sparse-features").size(); i++) {
|
|
const std::string &name = m_parameter->GetParam("report-sparse-features")[i];
|
|
if (m_targetBigramFeature && name.compare(m_targetBigramFeature->GetScoreProducerWeightShortName(0)) == 0)
|
|
m_targetBigramFeature->SetSparseFeatureReporting();
|
|
if (m_targetNgramFeatures.size() > 0)
|
|
for (size_t i=0; i < m_targetNgramFeatures.size(); ++i)
|
|
if (name.compare(m_targetNgramFeatures[i]->GetScoreProducerWeightShortName(0)) == 0)
|
|
m_targetNgramFeatures[i]->SetSparseFeatureReporting();
|
|
if (m_phraseBoundaryFeature && name.compare(m_phraseBoundaryFeature->GetScoreProducerWeightShortName(0)) == 0)
|
|
m_phraseBoundaryFeature->SetSparseFeatureReporting();
|
|
if (m_phraseLengthFeature && name.compare(m_phraseLengthFeature->GetScoreProducerWeightShortName(0)) == 0)
|
|
m_phraseLengthFeature->SetSparseFeatureReporting();
|
|
if (m_targetWordInsertionFeature && name.compare(m_targetWordInsertionFeature->GetScoreProducerWeightShortName(0)) == 0)
|
|
m_targetWordInsertionFeature->SetSparseFeatureReporting();
|
|
if (m_sourceWordDeletionFeature && name.compare(m_sourceWordDeletionFeature->GetScoreProducerWeightShortName(0)) == 0)
|
|
m_sourceWordDeletionFeature->SetSparseFeatureReporting();
|
|
if (m_wordTranslationFeatures.size() > 0)
|
|
for (size_t i=0; i < m_wordTranslationFeatures.size(); ++i)
|
|
if (name.compare(m_wordTranslationFeatures[i]->GetScoreProducerWeightShortName(0)) == 0)
|
|
m_wordTranslationFeatures[i]->SetSparseFeatureReporting();
|
|
if (m_phrasePairFeatures.size() > 0)
|
|
for (size_t i=0; i < m_phrasePairFeatures.size(); ++i)
|
|
if (name.compare(m_phrasePairFeatures[i]->GetScoreProducerWeightShortName(0)) == 0)
|
|
m_wordTranslationFeatures[i]->SetSparseFeatureReporting();
|
|
for (size_t j = 0; j < m_sparsePhraseDictionary.size(); ++j) {
|
|
if (m_sparsePhraseDictionary[j] && name.compare(m_sparsePhraseDictionary[j]->GetScoreProducerWeightShortName(0)) == 0) {
|
|
m_sparsePhraseDictionary[j]->SetSparseFeatureReporting();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//configure the translation systems with these tables
|
|
vector<string> tsConfig = m_parameter->GetParam("translation-systems");
|
|
if (!tsConfig.size()) {
|
|
//use all models in default system.
|
|
tsConfig.push_back(TranslationSystem::DEFAULT + " R * D * L * G *");
|
|
}
|
|
|
|
if (m_wordPenaltyProducers.size() != tsConfig.size()) {
|
|
UserMessage::Add(string("Mismatch between number of word penalties and number of translation systems"));
|
|
return false;
|
|
}
|
|
|
|
if (IsChart()) {
|
|
//insert some null distortion score producers
|
|
m_distortionScoreProducers.assign(tsConfig.size(), NULL);
|
|
} else {
|
|
if (m_distortionScoreProducers.size() != tsConfig.size()) {
|
|
UserMessage::Add(string("Mismatch between number of distortion scores and number of translation systems. Or [search-algorithm] has been set to a phrase-based algorithm when it should be chart decoding"));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
TranslationSystem* tmpTS;
|
|
for (size_t i = 0; i < tsConfig.size(); ++i) {
|
|
vector<string> config = Tokenize(tsConfig[i]);
|
|
if (config.size() % 2 != 1) {
|
|
UserMessage::Add(string("Incorrect number of fields in Translation System config. Should be an odd number"));
|
|
}
|
|
m_translationSystems.insert(pair<string, TranslationSystem>(config[0],
|
|
TranslationSystem(config[0],m_wordPenaltyProducers[i],m_unknownWordPenaltyProducer,m_distortionScoreProducers[i])));
|
|
tmpTS = &(m_translationSystems.find(config[0])->second);
|
|
for (size_t j = 1; j < config.size(); j += 2) {
|
|
const string& id = config[j];
|
|
const string& tables = config[j+1];
|
|
set<size_t> tableIds;
|
|
if (tables != "*") {
|
|
//selected tables
|
|
vector<string> tableIdStrings = Tokenize(tables,",");
|
|
vector<size_t> tableIdList;
|
|
Scan<size_t>(tableIdList, tableIdStrings);
|
|
copy(tableIdList.begin(), tableIdList.end(), inserter(tableIds,tableIds.end()));
|
|
}
|
|
if (id == "D") {
|
|
for (size_t k = 0; k < m_decodeGraphs.size(); ++k) {
|
|
if (!tableIds.size() || tableIds.find(k) != tableIds.end()) {
|
|
VERBOSE(2,"Adding decoder graph " << k << " to translation system " << config[0] << endl);
|
|
m_translationSystems.find(config[0])->second.AddDecodeGraph(m_decodeGraphs[k],m_decodeGraphBackoff[k]);
|
|
}
|
|
}
|
|
} else if (id == "R") {
|
|
for (size_t k = 0; k < m_reorderModels.size(); ++k) {
|
|
if (!tableIds.size() || tableIds.find(k) != tableIds.end()) {
|
|
m_translationSystems.find(config[0])->second.AddReorderModel(m_reorderModels[k]);
|
|
VERBOSE(2,"Adding reorder table " << k << " to translation system " << config[0] << endl);
|
|
}
|
|
}
|
|
} else if (id == "G") {
|
|
for (size_t k = 0; k < m_globalLexicalModels.size(); ++k) {
|
|
if (!tableIds.size() || tableIds.find(k) != tableIds.end()) {
|
|
m_translationSystems.find(config[0])->second.AddGlobalLexicalModel(m_globalLexicalModels[k]);
|
|
VERBOSE(2,"Adding global lexical model " << k << " to translation system " << config[0] << endl);
|
|
}
|
|
}
|
|
} else if (id == "L") {
|
|
size_t lmid = 0;
|
|
for (LMList::const_iterator k = m_languageModel.begin(); k != m_languageModel.end(); ++k, ++lmid) {
|
|
if (!tableIds.size() || tableIds.find(lmid) != tableIds.end()) {
|
|
m_translationSystems.find(config[0])->second.AddLanguageModel(*k);
|
|
VERBOSE(2,"Adding language model " << lmid << " to translation system " << config[0] << endl);
|
|
}
|
|
}
|
|
} else {
|
|
UserMessage::Add(string("Incorrect translation system identifier: ") + id);
|
|
return false;
|
|
}
|
|
}
|
|
//Instigate dictionary loading
|
|
m_translationSystems.find(config[0])->second.ConfigDictionaries();
|
|
|
|
//Add any other features here.
|
|
if (m_bleuScoreFeature) {
|
|
m_translationSystems.find(config[0])->second.AddFeatureFunction(m_bleuScoreFeature);
|
|
}
|
|
if (m_targetBigramFeature) {
|
|
m_translationSystems.find(config[0])->second.AddFeatureFunction(m_targetBigramFeature);
|
|
}
|
|
if (m_targetNgramFeatures.size() > 0) {
|
|
for (size_t i=0; i < m_targetNgramFeatures.size(); ++i)
|
|
m_translationSystems.find(config[0])->second.AddFeatureFunction(m_targetNgramFeatures[i]);
|
|
}
|
|
if (m_phraseBoundaryFeature) {
|
|
m_translationSystems.find(config[0])->second.AddFeatureFunction(m_phraseBoundaryFeature);
|
|
}
|
|
if (m_phraseLengthFeature) {
|
|
m_translationSystems.find(config[0])->second.AddFeatureFunction(m_phraseLengthFeature);
|
|
}
|
|
if (m_targetWordInsertionFeature) {
|
|
m_translationSystems.find(config[0])->second.AddFeatureFunction(m_targetWordInsertionFeature);
|
|
}
|
|
if (m_sourceWordDeletionFeature) {
|
|
m_translationSystems.find(config[0])->second.AddFeatureFunction(m_sourceWordDeletionFeature);
|
|
}
|
|
if (m_wordTranslationFeatures.size() > 0) {
|
|
for (size_t i=0; i < m_wordTranslationFeatures.size(); ++i)
|
|
m_translationSystems.find(config[0])->second.AddFeatureFunction(m_wordTranslationFeatures[i]);
|
|
}
|
|
if (m_phrasePairFeatures.size() > 0) {
|
|
for (size_t i=0; i < m_phrasePairFeatures.size(); ++i)
|
|
m_translationSystems.find(config[0])->second.AddFeatureFunction(m_phrasePairFeatures[i]);
|
|
}
|
|
#ifdef HAVE_SYNLM
|
|
if (m_syntacticLanguageModel != NULL) {
|
|
m_translationSystems.find(config[0])->second.AddFeatureFunction(m_syntacticLanguageModel);
|
|
}
|
|
#endif
|
|
for (size_t i = 0; i < m_sparsePhraseDictionary.size(); ++i) {
|
|
if (m_sparsePhraseDictionary[i]) {
|
|
m_translationSystems.find(config[0])->second.AddFeatureFunction(m_sparsePhraseDictionary[i]);
|
|
}
|
|
}
|
|
if (m_globalLexicalModelsUnlimited.size() > 0) {
|
|
for (size_t i=0; i < m_globalLexicalModelsUnlimited.size(); ++i)
|
|
m_translationSystems.find(config[0])->second.AddFeatureFunction(m_globalLexicalModelsUnlimited[i]);
|
|
}
|
|
}
|
|
|
|
//Load extra feature weights
|
|
//NB: These are common to all translation systems (at the moment!)
|
|
vector<string> extraWeightConfig = m_parameter->GetParam("weight-file");
|
|
if (extraWeightConfig.size()) {
|
|
if (extraWeightConfig.size() != 1) {
|
|
UserMessage::Add("One argument should be supplied for weight-file");
|
|
return false;
|
|
}
|
|
ScoreComponentCollection extraWeights;
|
|
if (!extraWeights.Load(extraWeightConfig[0])) {
|
|
UserMessage::Add("Unable to load weights from " + extraWeightConfig[0]);
|
|
return false;
|
|
}
|
|
|
|
|
|
// DLM: apply additional weight to sparse features if applicable
|
|
for (size_t i = 0; i < m_targetNgramFeatures.size(); ++i) {
|
|
float weight = m_targetNgramFeatures[i]->GetSparseProducerWeight();
|
|
if (weight != 1) {
|
|
tmpTS->AddSparseProducer(m_targetNgramFeatures[i]);
|
|
cerr << "dlm sparse producer weight: " << weight << endl;
|
|
}
|
|
}
|
|
|
|
// GLM: apply additional weight to sparse features if applicable
|
|
for (size_t i = 0; i < m_globalLexicalModelsUnlimited.size(); ++i) {
|
|
float weight = m_globalLexicalModelsUnlimited[i]->GetSparseProducerWeight();
|
|
if (weight != 1) {
|
|
tmpTS->AddSparseProducer(m_globalLexicalModelsUnlimited[i]);
|
|
cerr << "glm sparse producer weight: " << weight << endl;
|
|
}
|
|
}
|
|
|
|
// WT: apply additional weight to sparse features if applicable
|
|
for (size_t i = 0; i < m_wordTranslationFeatures.size(); ++i) {
|
|
float weight = m_wordTranslationFeatures[i]->GetSparseProducerWeight();
|
|
if (weight != 1) {
|
|
tmpTS->AddSparseProducer(m_wordTranslationFeatures[i]);
|
|
cerr << "wt sparse producer weight: " << weight << endl;
|
|
if (m_mira)
|
|
m_metaFeatureProducer = new MetaFeatureProducer("wt");
|
|
}
|
|
}
|
|
|
|
// PP: apply additional weight to sparse features if applicable
|
|
for (size_t i = 0; i < m_phrasePairFeatures.size(); ++i) {
|
|
float weight = m_phrasePairFeatures[i]->GetSparseProducerWeight();
|
|
if (weight != 1) {
|
|
tmpTS->AddSparseProducer(m_phrasePairFeatures[i]);
|
|
cerr << "pp sparse producer weight: " << weight << endl;
|
|
if (m_mira)
|
|
m_metaFeatureProducer = new MetaFeatureProducer("pp");
|
|
}
|
|
}
|
|
|
|
// PB: apply additional weight to sparse features if applicable
|
|
if (m_phraseBoundaryFeature) {
|
|
float weight = m_phraseBoundaryFeature->GetSparseProducerWeight();
|
|
if (weight != 1) {
|
|
tmpTS->AddSparseProducer(m_phraseBoundaryFeature);
|
|
cerr << "pb sparse producer weight: " << weight << endl;
|
|
}
|
|
}
|
|
|
|
m_allWeights.PlusEquals(extraWeights);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void StaticData::SetBooleanParameter( bool *parameter, string parameterName, bool defaultValue )
|
|
{
|
|
// default value if nothing is specified
|
|
*parameter = defaultValue;
|
|
if (! m_parameter->isParamSpecified( parameterName ) ) {
|
|
return;
|
|
}
|
|
|
|
// if parameter is just specified as, e.g. "-parameter" set it true
|
|
if (m_parameter->GetParam( parameterName ).size() == 0) {
|
|
*parameter = true;
|
|
}
|
|
|
|
// if paramter is specified "-parameter true" or "-parameter false"
|
|
else if (m_parameter->GetParam( parameterName ).size() == 1) {
|
|
*parameter = Scan<bool>( m_parameter->GetParam( parameterName )[0]);
|
|
}
|
|
}
|
|
|
|
void StaticData::SetWeight(const ScoreProducer* sp, float weight)
|
|
{
|
|
m_allWeights.Resize();
|
|
m_allWeights.Assign(sp,weight);
|
|
}
|
|
|
|
void StaticData::SetWeights(const ScoreProducer* sp, const std::vector<float>& weights)
|
|
{
|
|
m_allWeights.Resize();
|
|
m_allWeights.Assign(sp,weights);
|
|
}
|
|
|
|
StaticData::~StaticData()
|
|
{
|
|
RemoveAllInColl(m_sparsePhraseDictionary);
|
|
RemoveAllInColl(m_phraseDictionary);
|
|
RemoveAllInColl(m_generationDictionary);
|
|
RemoveAllInColl(m_reorderModels);
|
|
RemoveAllInColl(m_globalLexicalModels);
|
|
|
|
#ifdef HAVE_SYNLM
|
|
delete m_syntacticLanguageModel;
|
|
#endif
|
|
|
|
|
|
RemoveAllInColl(m_decodeGraphs);
|
|
RemoveAllInColl(m_wordPenaltyProducers);
|
|
RemoveAllInColl(m_distortionScoreProducers);
|
|
m_languageModel.CleanUp();
|
|
|
|
// delete trans opt
|
|
ClearTransOptionCache();
|
|
|
|
// small score producers
|
|
delete m_unknownWordPenaltyProducer;
|
|
delete m_targetBigramFeature;
|
|
for (size_t i=0; i < m_targetNgramFeatures.size(); ++i)
|
|
delete m_targetNgramFeatures[i];
|
|
delete m_phraseBoundaryFeature;
|
|
delete m_phraseLengthFeature;
|
|
delete m_targetWordInsertionFeature;
|
|
delete m_sourceWordDeletionFeature;
|
|
for (size_t i=0; i < m_wordTranslationFeatures.size(); ++i)
|
|
delete m_wordTranslationFeatures[i];
|
|
for (size_t i=0; i < m_phrasePairFeatures.size(); ++i)
|
|
delete m_phrasePairFeatures[i];
|
|
for (size_t i=0; i < m_globalLexicalModelsUnlimited.size(); ++i)
|
|
delete m_globalLexicalModelsUnlimited[i];
|
|
|
|
// memory pools
|
|
Phrase::FinalizeMemPool();
|
|
|
|
}
|
|
|
|
#ifdef HAVE_SYNLM
|
|
bool StaticData::LoadSyntacticLanguageModel() {
|
|
cerr << "Loading syntactic language models..." << std::endl;
|
|
|
|
const vector<float> weights = Scan<float>(m_parameter->GetParam("weight-slm"));
|
|
const vector<string> files = m_parameter->GetParam("slmodel-file");
|
|
|
|
const FactorType factorType = (m_parameter->GetParam("slmodel-factor").size() > 0) ?
|
|
TransformScore(Scan<int>(m_parameter->GetParam("slmodel-factor")[0]))
|
|
: 0;
|
|
|
|
const size_t beamWidth = (m_parameter->GetParam("slmodel-beam").size() > 0) ?
|
|
TransformScore(Scan<int>(m_parameter->GetParam("slmodel-beam")[0]))
|
|
: 500;
|
|
|
|
if (files.size() < 1) {
|
|
cerr << "No syntactic language model files specified!" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
// check if feature is used
|
|
if (weights.size() >= 1) {
|
|
|
|
//cout.setf(ios::scientific,ios::floatfield);
|
|
//cerr.setf(ios::scientific,ios::floatfield);
|
|
|
|
// create the feature
|
|
m_syntacticLanguageModel = new SyntacticLanguageModel(files,weights,factorType,beamWidth);
|
|
|
|
/*
|
|
/////////////////////////////////////////
|
|
// BEGIN LANE's UNSTABLE EXPERIMENT :)
|
|
//
|
|
|
|
double ppl = m_syntacticLanguageModel->perplexity();
|
|
cerr << "Probability is " << ppl << endl;
|
|
|
|
|
|
//
|
|
// END LANE's UNSTABLE EXPERIMENT
|
|
/////////////////////////////////////////
|
|
*/
|
|
|
|
|
|
if (m_syntacticLanguageModel==NULL) {
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
#endif
|
|
|
|
bool StaticData::LoadLexicalReorderingModel()
|
|
{
|
|
VERBOSE(1, "Loading lexical distortion models...");
|
|
const vector<string> fileStr = m_parameter->GetParam("distortion-file");
|
|
bool hasWeightlr = (m_parameter->GetParam("weight-lr").size() != 0);
|
|
vector<string> weightsStr;
|
|
if (hasWeightlr) {
|
|
weightsStr = m_parameter->GetParam("weight-lr");
|
|
} else {
|
|
weightsStr = m_parameter->GetParam("weight-d");
|
|
}
|
|
|
|
std::vector<float> weights;
|
|
size_t w = 1; //cur weight
|
|
if (hasWeightlr) {
|
|
w = 0; // if reading from weight-lr, don't have to count first as distortion penalty
|
|
}
|
|
size_t f = 0; //cur file
|
|
//get weights values
|
|
VERBOSE(1, "have " << fileStr.size() << " models" << std::endl);
|
|
for(size_t j = 0; j < weightsStr.size(); ++j) {
|
|
weights.push_back(Scan<float>(weightsStr[j]));
|
|
}
|
|
//load all models
|
|
for(size_t i = 0; i < fileStr.size(); ++i) {
|
|
vector<string> spec = Tokenize<string>(fileStr[f], " ");
|
|
++f; //mark file as consumed
|
|
if(spec.size() != 4) {
|
|
UserMessage::Add("Invalid Lexical Reordering Model Specification: " + fileStr[f]);
|
|
return false;
|
|
}
|
|
|
|
// spec[0] = factor map
|
|
// spec[1] = name
|
|
// spec[2] = num weights
|
|
// spec[3] = fileName
|
|
|
|
// decode factor map
|
|
|
|
vector<FactorType> input, output;
|
|
vector<string> inputfactors = Tokenize(spec[0],"-");
|
|
if(inputfactors.size() == 2) {
|
|
input = Tokenize<FactorType>(inputfactors[0],",");
|
|
output = Tokenize<FactorType>(inputfactors[1],",");
|
|
} else if(inputfactors.size() == 1) {
|
|
//if there is only one side assume it is on e side... why?
|
|
output = Tokenize<FactorType>(inputfactors[0],",");
|
|
} else {
|
|
//format error
|
|
return false;
|
|
}
|
|
|
|
string modelType = spec[1];
|
|
|
|
// decode num weights and fetch weights from array
|
|
std::vector<float> mweights;
|
|
size_t numWeights = atoi(spec[2].c_str());
|
|
for(size_t k = 0; k < numWeights; ++k, ++w) {
|
|
if(w >= weights.size()) {
|
|
UserMessage::Add("Lexicalized distortion model: Not enough weights, add to [weight-d]");
|
|
return false;
|
|
} else
|
|
mweights.push_back(weights[w]);
|
|
}
|
|
|
|
string filePath = spec[3];
|
|
|
|
m_reorderModels.push_back(new LexicalReordering(input, output, LexicalReorderingConfiguration(modelType), filePath, mweights));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool StaticData::LoadGlobalLexicalModel()
|
|
{
|
|
const vector<float> &weight = Scan<float>(m_parameter->GetParam("weight-lex"));
|
|
const vector<string> &file = m_parameter->GetParam("global-lexical-file");
|
|
|
|
if (weight.size() != file.size()) {
|
|
std::cerr << "number of weights and models for the global lexical model does not match ("
|
|
<< weight.size() << " != " << file.size() << ")" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0; i < weight.size(); i++ ) {
|
|
vector<string> spec = Tokenize<string>(file[i], " ");
|
|
if ( spec.size() != 2 ) {
|
|
std::cerr << "wrong global lexical model specification: " << file[i] << endl;
|
|
return false;
|
|
}
|
|
vector< string > factors = Tokenize(spec[0],"-");
|
|
if ( factors.size() != 2 ) {
|
|
std::cerr << "wrong factor definition for global lexical model: " << spec[0] << endl;
|
|
return false;
|
|
}
|
|
vector<FactorType> inputFactors = Tokenize<FactorType>(factors[0],",");
|
|
vector<FactorType> outputFactors = Tokenize<FactorType>(factors[1],",");
|
|
m_globalLexicalModels.push_back( new GlobalLexicalModel( spec[1], inputFactors, outputFactors ) );
|
|
SetWeight(m_globalLexicalModels.back(),weight[i]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool StaticData::LoadGlobalLexicalModelUnlimited()
|
|
{
|
|
const vector<float> &weight = Scan<float>(m_parameter->GetParam("weight-glm"));
|
|
const vector<string> &modelSpec = m_parameter->GetParam("glm-feature");
|
|
|
|
if (weight.size() != 0 && weight.size() != modelSpec.size()) {
|
|
std::cerr << "number of sparse producer weights and model specs for the global lexical model unlimited "
|
|
"does not match (" << weight.size() << " != " << modelSpec.size() << ")" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0; i < modelSpec.size(); i++ ) {
|
|
bool ignorePunctuation = true, biasFeature = false, restricted = false;
|
|
size_t context = 0;
|
|
string filenameSource, filenameTarget;
|
|
vector< string > factors;
|
|
vector< string > spec = Tokenize(modelSpec[i]," ");
|
|
|
|
// read optional punctuation and bias specifications
|
|
if (spec.size() > 0) {
|
|
if (spec.size() != 2 && spec.size() != 3 && spec.size() != 4 && spec.size() != 6) {
|
|
UserMessage::Add("Format of glm feature is <factor-src>-<factor-tgt> [ignore-punct] [use-bias] "
|
|
"[context-type] [filename-src filename-tgt]");
|
|
return false;
|
|
}
|
|
|
|
factors = Tokenize(spec[0],"-");
|
|
if (spec.size() >= 2)
|
|
ignorePunctuation = Scan<size_t>(spec[1]);
|
|
if (spec.size() >= 3)
|
|
biasFeature = Scan<size_t>(spec[2]);
|
|
if (spec.size() >= 4)
|
|
context = Scan<size_t>(spec[3]);
|
|
if (spec.size() == 6) {
|
|
filenameSource = spec[4];
|
|
filenameTarget = spec[5];
|
|
restricted = true;
|
|
}
|
|
}
|
|
else
|
|
factors = Tokenize(modelSpec[i],"-");
|
|
|
|
if ( factors.size() != 2 ) {
|
|
UserMessage::Add("Wrong factor definition for global lexical model unlimited: " + modelSpec[i]);
|
|
return false;
|
|
}
|
|
|
|
const vector<FactorType> inputFactors = Tokenize<FactorType>(factors[0],",");
|
|
const vector<FactorType> outputFactors = Tokenize<FactorType>(factors[1],",");
|
|
throw runtime_error("GlobalLexicalModelUnlimited should be reimplemented as a stateful feature");
|
|
GlobalLexicalModelUnlimited* glmu = NULL; // new GlobalLexicalModelUnlimited(inputFactors, outputFactors, biasFeature, ignorePunctuation, context);
|
|
m_globalLexicalModelsUnlimited.push_back(glmu);
|
|
if (restricted) {
|
|
cerr << "loading word translation word lists from " << filenameSource << " and " << filenameTarget << endl;
|
|
if (!glmu->Load(filenameSource, filenameTarget)) {
|
|
UserMessage::Add("Unable to load word lists for word translation feature from files " + filenameSource + " and " + filenameTarget);
|
|
return false;
|
|
}
|
|
}
|
|
if (weight.size() > i)
|
|
m_globalLexicalModelsUnlimited[i]->SetSparseProducerWeight(weight[i]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool StaticData::LoadLanguageModels()
|
|
{
|
|
if (m_parameter->GetParam("lmodel-file").size() > 0) {
|
|
// weights
|
|
vector<float> weightAll = Scan<float>(m_parameter->GetParam("weight-l"));
|
|
|
|
// dictionary upper-bounds fo all IRST LMs
|
|
vector<int> LMdub = Scan<int>(m_parameter->GetParam("lmodel-dub"));
|
|
if (m_parameter->GetParam("lmodel-dub").size() == 0) {
|
|
for(size_t i=0; i<m_parameter->GetParam("lmodel-file").size(); i++)
|
|
LMdub.push_back(0);
|
|
}
|
|
|
|
// initialize n-gram order for each factor. populated only by factored lm
|
|
const vector<string> &lmVector = m_parameter->GetParam("lmodel-file");
|
|
//prevent language models from being loaded twice
|
|
map<string,LanguageModel*> languageModelsLoaded;
|
|
|
|
for(size_t i=0; i<lmVector.size(); i++) {
|
|
LanguageModel* lm = NULL;
|
|
if (languageModelsLoaded.find(lmVector[i]) != languageModelsLoaded.end()) {
|
|
lm = languageModelsLoaded[lmVector[i]]->Duplicate();
|
|
} else {
|
|
vector<string> token = Tokenize(lmVector[i]);
|
|
if (token.size() != 4 && token.size() != 5 ) {
|
|
UserMessage::Add("Expected format 'LM-TYPE FACTOR-TYPE NGRAM-ORDER filePath [mapFilePath (only for IRSTLM)]'");
|
|
return false;
|
|
}
|
|
// type = implementation, SRI, IRST etc
|
|
LMImplementation lmImplementation = static_cast<LMImplementation>(Scan<int>(token[0]));
|
|
|
|
// factorType = 0 = Surface, 1 = POS, 2 = Stem, 3 = Morphology, etc
|
|
vector<FactorType> factorTypes = Tokenize<FactorType>(token[1], ",");
|
|
|
|
// nGramOrder = 2 = bigram, 3 = trigram, etc
|
|
size_t nGramOrder = Scan<int>(token[2]);
|
|
|
|
string &languageModelFile = token[3];
|
|
if (token.size() == 5) {
|
|
if (lmImplementation==IRST)
|
|
languageModelFile += " " + token[4];
|
|
else {
|
|
UserMessage::Add("Expected format 'LM-TYPE FACTOR-TYPE NGRAM-ORDER filePath [mapFilePath (only for IRSTLM)]'");
|
|
return false;
|
|
}
|
|
}
|
|
IFVERBOSE(1)
|
|
PrintUserTime(string("Start loading LanguageModel ") + languageModelFile);
|
|
|
|
lm = LanguageModelFactory::CreateLanguageModel(
|
|
lmImplementation
|
|
, factorTypes
|
|
, nGramOrder
|
|
, languageModelFile
|
|
, LMdub[i]);
|
|
if (lm == NULL) {
|
|
UserMessage::Add("no LM created. We probably don't have it compiled");
|
|
return false;
|
|
}
|
|
languageModelsLoaded[lmVector[i]] = lm;
|
|
}
|
|
|
|
m_languageModel.Add(lm);
|
|
if (m_lmEnableOOVFeature) {
|
|
vector<float> weights(2);
|
|
weights[0] = weightAll.at(i*2);
|
|
weights[1] = weightAll.at(i*2+1);
|
|
SetWeights(lm,weights);
|
|
} else {
|
|
SetWeight(lm,weightAll[i]);
|
|
}
|
|
}
|
|
}
|
|
// flag indicating that language models were loaded,
|
|
// since phrase table loading requires their presence
|
|
m_fLMsLoaded = true;
|
|
IFVERBOSE(1)
|
|
PrintUserTime("Finished loading LanguageModels");
|
|
return true;
|
|
}
|
|
|
|
bool StaticData::LoadGenerationTables()
|
|
{
|
|
if (m_parameter->GetParam("generation-file").size() > 0) {
|
|
const vector<string> &generationVector = m_parameter->GetParam("generation-file");
|
|
const vector<float> &weight = Scan<float>(m_parameter->GetParam("weight-generation"));
|
|
|
|
IFVERBOSE(1) {
|
|
TRACE_ERR( "weight-generation: ");
|
|
for (size_t i = 0 ; i < weight.size() ; i++) {
|
|
TRACE_ERR( weight[i] << "\t");
|
|
}
|
|
TRACE_ERR(endl);
|
|
}
|
|
size_t currWeightNum = 0;
|
|
|
|
for(size_t currDict = 0 ; currDict < generationVector.size(); currDict++) {
|
|
vector<string> token = Tokenize(generationVector[currDict]);
|
|
vector<FactorType> input = Tokenize<FactorType>(token[0], ",")
|
|
,output = Tokenize<FactorType>(token[1], ",");
|
|
m_maxFactorIdx[1] = CalcMax(m_maxFactorIdx[1], input, output);
|
|
string filePath;
|
|
size_t numFeatures;
|
|
|
|
numFeatures = Scan<size_t>(token[2]);
|
|
filePath = token[3];
|
|
|
|
if (!FileExists(filePath) && FileExists(filePath + ".gz")) {
|
|
filePath += ".gz";
|
|
}
|
|
|
|
VERBOSE(1, filePath << endl);
|
|
|
|
m_generationDictionary.push_back(new GenerationDictionary(numFeatures, input,output));
|
|
CHECK(m_generationDictionary.back() && "could not create GenerationDictionary");
|
|
if (!m_generationDictionary.back()->Load(filePath, Output)) {
|
|
delete m_generationDictionary.back();
|
|
return false;
|
|
}
|
|
vector<float> gdWeights;
|
|
for(size_t i = 0; i < numFeatures; i++) {
|
|
CHECK(currWeightNum < weight.size());
|
|
gdWeights.push_back(weight[currWeightNum++]);
|
|
}
|
|
SetWeights(m_generationDictionary.back(), gdWeights);
|
|
}
|
|
if (currWeightNum != weight.size()) {
|
|
TRACE_ERR( " [WARNING] config file has " << weight.size() << " generation weights listed, but the configuration for generation files indicates there should be " << currWeightNum << "!\n");
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Doesn't load phrase tables any more. Just creates the features. */
|
|
bool StaticData::LoadPhraseTables()
|
|
{
|
|
VERBOSE(2,"Creating phrase table features" << endl);
|
|
|
|
// language models must be loaded prior to loading phrase tables
|
|
CHECK(m_fLMsLoaded);
|
|
// load phrase translation tables
|
|
if (m_parameter->GetParam("ttable-file").size() > 0) {
|
|
// weights
|
|
vector<float> weightAll = Scan<float>(m_parameter->GetParam("weight-t"));
|
|
|
|
const vector<string> &translationVector = m_parameter->GetParam("ttable-file");
|
|
vector<size_t> maxTargetPhrase = Scan<size_t>(m_parameter->GetParam("ttable-limit"));
|
|
|
|
if(maxTargetPhrase.size() == 1 && translationVector.size() > 1) {
|
|
VERBOSE(1, "Using uniform ttable-limit of " << maxTargetPhrase[0] << " for all translation tables." << endl);
|
|
for(size_t i = 1; i < translationVector.size(); i++)
|
|
maxTargetPhrase.push_back(maxTargetPhrase[0]);
|
|
} else if(maxTargetPhrase.size() != 1 && maxTargetPhrase.size() < translationVector.size()) {
|
|
stringstream strme;
|
|
strme << "You specified " << translationVector.size() << " translation tables, but only " << maxTargetPhrase.size() << " ttable-limits.";
|
|
UserMessage::Add(strme.str());
|
|
return false;
|
|
}
|
|
|
|
size_t index = 0;
|
|
size_t weightAllOffset = 0;
|
|
bool oldFileFormat = false;
|
|
for(size_t currDict = 0 ; currDict < translationVector.size(); currDict++) {
|
|
vector<string> token = Tokenize(translationVector[currDict]);
|
|
|
|
if(currDict == 0 && token.size() == 4) {
|
|
VERBOSE(1, "Warning: Phrase table specification in old 4-field format. Assuming binary phrase tables (type 1)!" << endl);
|
|
oldFileFormat = true;
|
|
}
|
|
|
|
if((!oldFileFormat && token.size() < 5) || (oldFileFormat && token.size() != 4)) {
|
|
UserMessage::Add("invalid phrase table specification");
|
|
return false;
|
|
}
|
|
|
|
PhraseTableImplementation implementation = (PhraseTableImplementation) Scan<int>(token[0]);
|
|
if(oldFileFormat) {
|
|
token.push_back(token[3]);
|
|
token[3] = token[2];
|
|
token[2] = token[1];
|
|
token[1] = token[0];
|
|
token[0] = "1";
|
|
implementation = Binary;
|
|
} else
|
|
implementation = (PhraseTableImplementation) Scan<int>(token[0]);
|
|
|
|
CHECK(token.size() >= 5);
|
|
//characteristics of the phrase table
|
|
|
|
vector<FactorType> input = Tokenize<FactorType>(token[1], ",")
|
|
,output = Tokenize<FactorType>(token[2], ",");
|
|
m_maxFactorIdx[0] = CalcMax(m_maxFactorIdx[0], input);
|
|
m_maxFactorIdx[1] = CalcMax(m_maxFactorIdx[1], output);
|
|
m_maxNumFactors = std::max(m_maxFactorIdx[0], m_maxFactorIdx[1]) + 1;
|
|
size_t numScoreComponent = Scan<size_t>(token[3]);
|
|
string filePath= token[4];
|
|
|
|
CHECK(weightAll.size() >= weightAllOffset + numScoreComponent);
|
|
|
|
// weights for this phrase dictionary
|
|
// first InputScores (if any), then translation scores
|
|
vector<float> weight;
|
|
|
|
if(currDict==0 && (m_inputType == ConfusionNetworkInput || m_inputType == WordLatticeInput)) {
|
|
// TODO. find what the assumptions made by confusion network about phrase table output which makes
|
|
// it only work with binrary file. This is a hack
|
|
|
|
m_numInputScores=m_parameter->GetParam("weight-i").size();
|
|
|
|
if (implementation == Binary)
|
|
{
|
|
for(unsigned k=0; k<m_numInputScores; ++k)
|
|
weight.push_back(Scan<float>(m_parameter->GetParam("weight-i")[k]));
|
|
}
|
|
|
|
if(m_parameter->GetParam("link-param-count").size())
|
|
m_numLinkParams = Scan<size_t>(m_parameter->GetParam("link-param-count")[0]);
|
|
|
|
//print some info about this interaction:
|
|
if (implementation == Binary) {
|
|
if (m_numLinkParams == m_numInputScores) {
|
|
VERBOSE(1,"specified equal numbers of link parameters and insertion weights, not using non-epsilon 'real' word link count.\n");
|
|
} else if ((m_numLinkParams + 1) == m_numInputScores) {
|
|
VERBOSE(1,"WARN: "<< m_numInputScores << " insertion weights found and only "<< m_numLinkParams << " link parameters specified, applying non-epsilon 'real' word link count for last feature weight.\n");
|
|
} else {
|
|
stringstream strme;
|
|
strme << "You specified " << m_numInputScores
|
|
<< " input weights (weight-i), but you specified " << m_numLinkParams << " link parameters (link-param-count)!";
|
|
UserMessage::Add(strme.str());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
}
|
|
if (!m_inputType) {
|
|
m_numInputScores=0;
|
|
}
|
|
//this number changes depending on what phrase table we're talking about: only 0 has the weights on it
|
|
size_t tableInputScores = (currDict == 0 && implementation == Binary) ? m_numInputScores : 0;
|
|
|
|
for (size_t currScore = 0 ; currScore < numScoreComponent; currScore++)
|
|
weight.push_back(weightAll[weightAllOffset + currScore]);
|
|
|
|
|
|
if(weight.size() - tableInputScores != numScoreComponent) {
|
|
stringstream strme;
|
|
strme << "Your phrase table has " << numScoreComponent
|
|
<< " scores, but you specified " << (weight.size() - tableInputScores) << " weights!";
|
|
UserMessage::Add(strme.str());
|
|
return false;
|
|
}
|
|
|
|
weightAllOffset += numScoreComponent;
|
|
numScoreComponent += tableInputScores;
|
|
|
|
string targetPath, alignmentsFile;
|
|
if (implementation == SuffixArray) {
|
|
targetPath = token[5];
|
|
alignmentsFile= token[6];
|
|
}
|
|
|
|
CHECK(numScoreComponent==weight.size());
|
|
|
|
|
|
//This is needed for regression testing, but the phrase table
|
|
//might not really be loading here
|
|
IFVERBOSE(1)
|
|
PrintUserTime(string("Start loading PhraseTable ") + filePath);
|
|
VERBOSE(1,"filePath: " << filePath <<endl);
|
|
|
|
//optional create sparse phrase feature
|
|
SparsePhraseDictionaryFeature* spdf = NULL;
|
|
if (token.size() >= 6 && token[5] == "sparse") {
|
|
spdf = new SparsePhraseDictionaryFeature();
|
|
}
|
|
m_sparsePhraseDictionary.push_back(spdf);
|
|
|
|
|
|
PhraseDictionaryFeature* pdf = new PhraseDictionaryFeature(
|
|
implementation
|
|
, spdf
|
|
, numScoreComponent
|
|
, (currDict==0 ? m_numInputScores : 0)
|
|
, input
|
|
, output
|
|
, filePath
|
|
, weight
|
|
, currDict
|
|
, maxTargetPhrase[index]
|
|
, targetPath, alignmentsFile);
|
|
|
|
m_phraseDictionary.push_back(pdf);
|
|
|
|
SetWeights(m_phraseDictionary.back(),weight);
|
|
|
|
|
|
|
|
|
|
index++;
|
|
}
|
|
}
|
|
|
|
IFVERBOSE(1)
|
|
PrintUserTime("Finished loading phrase tables");
|
|
return true;
|
|
}
|
|
|
|
void StaticData::LoadNonTerminals()
|
|
{
|
|
string defaultNonTerminals;
|
|
|
|
if (m_parameter->GetParam("non-terminals").size() == 0) {
|
|
defaultNonTerminals = "X";
|
|
} else {
|
|
vector<std::string> tokens = Tokenize(m_parameter->GetParam("non-terminals")[0]);
|
|
defaultNonTerminals = tokens[0];
|
|
}
|
|
|
|
FactorCollection &factorCollection = FactorCollection::Instance();
|
|
|
|
m_inputDefaultNonTerminal.SetIsNonTerminal(true);
|
|
const Factor *sourceFactor = factorCollection.AddFactor(Input, 0, defaultNonTerminals);
|
|
m_inputDefaultNonTerminal.SetFactor(0, sourceFactor);
|
|
|
|
m_outputDefaultNonTerminal.SetIsNonTerminal(true);
|
|
const Factor *targetFactor = factorCollection.AddFactor(Output, 0, defaultNonTerminals);
|
|
m_outputDefaultNonTerminal.SetFactor(0, targetFactor);
|
|
|
|
// for unknwon words
|
|
if (m_parameter->GetParam("unknown-lhs").size() == 0) {
|
|
UnknownLHSEntry entry(defaultNonTerminals, 0.0f);
|
|
m_unknownLHS.push_back(entry);
|
|
} else {
|
|
const string &filePath = m_parameter->GetParam("unknown-lhs")[0];
|
|
|
|
InputFileStream inStream(filePath);
|
|
string line;
|
|
while(getline(inStream, line)) {
|
|
vector<string> tokens = Tokenize(line);
|
|
CHECK(tokens.size() == 2);
|
|
UnknownLHSEntry entry(tokens[0], Scan<float>(tokens[1]));
|
|
m_unknownLHS.push_back(entry);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void StaticData::LoadChartDecodingParameters()
|
|
{
|
|
LoadNonTerminals();
|
|
|
|
// source label overlap
|
|
if (m_parameter->GetParam("source-label-overlap").size() > 0) {
|
|
m_sourceLabelOverlap = (SourceLabelOverlap) Scan<int>(m_parameter->GetParam("source-label-overlap")[0]);
|
|
} else {
|
|
m_sourceLabelOverlap = SourceLabelOverlapAdd;
|
|
}
|
|
|
|
m_ruleLimit = (m_parameter->GetParam("rule-limit").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("rule-limit")[0]) : DEFAULT_MAX_TRANS_OPT_SIZE;
|
|
}
|
|
|
|
void StaticData::LoadPhraseBasedParameters()
|
|
{
|
|
const vector<string> distortionWeights = m_parameter->GetParam("weight-d");
|
|
size_t distortionWeightCount = distortionWeights.size();
|
|
//if there's a lex-reordering model, and no separate weight set, then
|
|
//take just one of these weights for linear distortion
|
|
if (!m_parameter->GetParam("weight-lr").size() && m_parameter->GetParam("distortion-file").size()) {
|
|
distortionWeightCount = 1;
|
|
}
|
|
for (size_t i = 0; i < distortionWeightCount; ++i) {
|
|
float weightDistortion = Scan<float>(distortionWeights[i]);
|
|
m_distortionScoreProducers.push_back(new DistortionScoreProducer());
|
|
SetWeight(m_distortionScoreProducers.back(), weightDistortion);
|
|
}
|
|
}
|
|
|
|
bool StaticData::LoadDecodeGraphs()
|
|
{
|
|
const vector<string> &mappingVector = m_parameter->GetParam("mapping");
|
|
const vector<size_t> &maxChartSpans = Scan<size_t>(m_parameter->GetParam("max-chart-span"));
|
|
|
|
DecodeStep *prev = 0;
|
|
size_t prevDecodeGraphInd = 0;
|
|
for(size_t i=0; i<mappingVector.size(); i++) {
|
|
vector<string> token = Tokenize(mappingVector[i]);
|
|
size_t decodeGraphInd;
|
|
DecodeType decodeType;
|
|
size_t index;
|
|
if (token.size() == 2) {
|
|
decodeGraphInd = 0;
|
|
decodeType = token[0] == "T" ? Translate : Generate;
|
|
index = Scan<size_t>(token[1]);
|
|
} else if (token.size() == 3) {
|
|
// For specifying multiple translation model
|
|
decodeGraphInd = Scan<size_t>(token[0]);
|
|
//the vectorList index can only increment by one
|
|
CHECK(decodeGraphInd == prevDecodeGraphInd || decodeGraphInd == prevDecodeGraphInd + 1);
|
|
if (decodeGraphInd > prevDecodeGraphInd) {
|
|
prev = NULL;
|
|
}
|
|
decodeType = token[1] == "T" ? Translate : Generate;
|
|
index = Scan<size_t>(token[2]);
|
|
} else {
|
|
UserMessage::Add("Malformed mapping!");
|
|
CHECK(false);
|
|
}
|
|
|
|
DecodeStep* decodeStep = NULL;
|
|
switch (decodeType) {
|
|
case Translate:
|
|
if(index>=m_phraseDictionary.size()) {
|
|
stringstream strme;
|
|
strme << "No phrase dictionary with index "
|
|
<< index << " available!";
|
|
UserMessage::Add(strme.str());
|
|
CHECK(false);
|
|
}
|
|
decodeStep = new DecodeStepTranslation(m_phraseDictionary[index], prev);
|
|
break;
|
|
case Generate:
|
|
if(index>=m_generationDictionary.size()) {
|
|
stringstream strme;
|
|
strme << "No generation dictionary with index "
|
|
<< index << " available!";
|
|
UserMessage::Add(strme.str());
|
|
CHECK(false);
|
|
}
|
|
decodeStep = new DecodeStepGeneration(m_generationDictionary[index], prev);
|
|
break;
|
|
case InsertNullFertilityWord:
|
|
CHECK(!"Please implement NullFertilityInsertion.");
|
|
break;
|
|
}
|
|
|
|
CHECK(decodeStep);
|
|
if (m_decodeGraphs.size() < decodeGraphInd + 1) {
|
|
DecodeGraph *decodeGraph;
|
|
if (IsChart()) {
|
|
size_t maxChartSpan = (decodeGraphInd < maxChartSpans.size()) ? maxChartSpans[decodeGraphInd] : DEFAULT_MAX_CHART_SPAN;
|
|
cerr << "max-chart-span: " << maxChartSpans[decodeGraphInd] << endl;
|
|
decodeGraph = new DecodeGraph(m_decodeGraphs.size(), maxChartSpan);
|
|
} else {
|
|
decodeGraph = new DecodeGraph(m_decodeGraphs.size());
|
|
}
|
|
|
|
m_decodeGraphs.push_back(decodeGraph); // TODO max chart span
|
|
}
|
|
|
|
m_decodeGraphs[decodeGraphInd]->Add(decodeStep);
|
|
prev = decodeStep;
|
|
prevDecodeGraphInd = decodeGraphInd;
|
|
}
|
|
|
|
// set maximum n-gram size for backoff approach to decoding paths
|
|
// default is always use subsequent paths (value = 0)
|
|
for(size_t i=0; i<m_decodeGraphs.size(); i++) {
|
|
m_decodeGraphBackoff.push_back( 0 );
|
|
}
|
|
// if specified, record maxmimum unseen n-gram size
|
|
const vector<string> &backoffVector = m_parameter->GetParam("decoding-graph-backoff");
|
|
for(size_t i=0; i<m_decodeGraphs.size() && i<backoffVector.size(); i++) {
|
|
m_decodeGraphBackoff[i] = Scan<size_t>(backoffVector[i]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool StaticData::LoadReferences()
|
|
{
|
|
vector<string> bleuWeightStr = m_parameter->GetParam("weight-bl");
|
|
vector<string> referenceFiles = m_parameter->GetParam("references");
|
|
if ((!referenceFiles.size() && bleuWeightStr.size()) || (referenceFiles.size() && !bleuWeightStr.size())) {
|
|
UserMessage::Add("You cannot use the bleu feature without references, and vice-versa");
|
|
return false;
|
|
}
|
|
if (!referenceFiles.size()) {
|
|
return true;
|
|
}
|
|
if (bleuWeightStr.size() > 1) {
|
|
UserMessage::Add("Can only specify one weight for the bleu feature");
|
|
return false;
|
|
}
|
|
|
|
float bleuWeight = Scan<float>(bleuWeightStr[0]);
|
|
m_bleuScoreFeature = new BleuScoreFeature();
|
|
SetWeight(m_bleuScoreFeature, bleuWeight);
|
|
|
|
cerr << "Loading reference file " << referenceFiles[0] << endl;
|
|
vector<vector<string> > references(referenceFiles.size());
|
|
for (size_t i =0; i < referenceFiles.size(); ++i) {
|
|
ifstream in(referenceFiles[i].c_str());
|
|
if (!in) {
|
|
stringstream strme;
|
|
strme << "Unable to load references from " << referenceFiles[i];
|
|
UserMessage::Add(strme.str());
|
|
return false;
|
|
}
|
|
string line;
|
|
while (getline(in,line)) {
|
|
/* if (GetSearchAlgorithm() == ChartDecoding) {
|
|
stringstream tmp;
|
|
tmp << "<s> " << line << " </s>";
|
|
line = tmp.str();
|
|
}*/
|
|
references[i].push_back(line);
|
|
}
|
|
if (i > 0) {
|
|
if (references[i].size() != references[i-1].size()) {
|
|
UserMessage::Add("Reference files are of different lengths");
|
|
return false;
|
|
}
|
|
}
|
|
in.close();
|
|
}
|
|
//Set the references in the bleu feature
|
|
m_bleuScoreFeature->LoadReferences(references);
|
|
return true;
|
|
}
|
|
|
|
bool StaticData::LoadDiscrimLMFeature()
|
|
{
|
|
// only load if specified
|
|
const vector<string> &wordFile = m_parameter->GetParam("dlm-model");
|
|
if (wordFile.empty()) {
|
|
return true;
|
|
}
|
|
cerr << "Loading " << wordFile.size() << " discriminative language model(s).." << endl;
|
|
|
|
// if this weight is specified, the sparse DLM weights will be scaled with an additional weight
|
|
vector<string> dlmWeightStr = m_parameter->GetParam("weight-dlm");
|
|
vector<float> dlmWeights;
|
|
for (size_t i=0; i<dlmWeightStr.size(); ++i)
|
|
dlmWeights.push_back(Scan<float>(dlmWeightStr[i]));
|
|
|
|
for (size_t i = 0; i < wordFile.size(); ++i) {
|
|
vector<string> tokens = Tokenize(wordFile[i]);
|
|
if (tokens.size() != 4) {
|
|
UserMessage::Add("Format of discriminative language model parameter is <order> <factor> <include-lower-ngrams> <filename>");
|
|
return false;
|
|
}
|
|
|
|
size_t order = Scan<size_t>(tokens[0]);
|
|
FactorType factorId = Scan<size_t>(tokens[1]);
|
|
bool include_lower_ngrams = Scan<bool>(tokens[2]);
|
|
string filename = tokens[3];
|
|
|
|
if (order == 2 && !include_lower_ngrams) { // TODO: remove TargetBigramFeature ?
|
|
m_targetBigramFeature = new TargetBigramFeature(factorId);
|
|
cerr << "loading vocab from " << filename << endl;
|
|
if (!m_targetBigramFeature->Load(filename)) {
|
|
UserMessage::Add("Unable to load word list from file " + filename);
|
|
return false;
|
|
}
|
|
}
|
|
else {
|
|
if (m_searchAlgorithm == ChartDecoding && !include_lower_ngrams) {
|
|
UserMessage::Add("Excluding lower order DLM ngrams is currently not supported for chart decoding.");
|
|
return false;
|
|
}
|
|
|
|
m_targetNgramFeatures.push_back(new TargetNgramFeature(factorId, order, include_lower_ngrams));
|
|
if (i < dlmWeights.size())
|
|
m_targetNgramFeatures[i]->SetSparseProducerWeight(dlmWeights[i]);
|
|
cerr << "loading vocab from " << filename << endl;
|
|
if (!m_targetNgramFeatures[i]->Load(filename)) {
|
|
UserMessage::Add("Unable to load word list from file " + filename);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool StaticData::LoadPhraseBoundaryFeature()
|
|
{
|
|
const vector<float> &weight = Scan<float>(m_parameter->GetParam("weight-pb"));
|
|
if (weight.size() > 1) {
|
|
std::cerr << "only one sparse producer weight allowed for the phrase boundary feature" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
const vector<string> &phraseBoundarySourceFactors =
|
|
m_parameter->GetParam("phrase-boundary-source-feature");
|
|
const vector<string> &phraseBoundaryTargetFactors =
|
|
m_parameter->GetParam("phrase-boundary-target-feature");
|
|
if (phraseBoundarySourceFactors.size() == 0 && phraseBoundaryTargetFactors.size() == 0) {
|
|
return true;
|
|
}
|
|
if (phraseBoundarySourceFactors.size() > 1) {
|
|
UserMessage::Add("Need to specify comma separated list of source factors for phrase boundary");
|
|
return false;
|
|
}
|
|
if (phraseBoundaryTargetFactors.size() > 1) {
|
|
UserMessage::Add("Need to specify comma separated list of target factors for phrase boundary");
|
|
return false;
|
|
}
|
|
FactorList sourceFactors;
|
|
FactorList targetFactors;
|
|
if (phraseBoundarySourceFactors.size()) {
|
|
sourceFactors = Tokenize<FactorType>(phraseBoundarySourceFactors[0],",");
|
|
}
|
|
if (phraseBoundaryTargetFactors.size()) {
|
|
targetFactors = Tokenize<FactorType>(phraseBoundaryTargetFactors[0],",");
|
|
}
|
|
//cerr << "source "; for (size_t i = 0; i < sourceFactors.size(); ++i) cerr << sourceFactors[i] << " "; cerr << endl;
|
|
//cerr << "target "; for (size_t i = 0; i < targetFactors.size(); ++i) cerr << targetFactors[i] << " "; cerr << endl;
|
|
m_phraseBoundaryFeature = new PhraseBoundaryFeature(sourceFactors,targetFactors);
|
|
if (weight.size() > 0)
|
|
m_phraseBoundaryFeature->SetSparseProducerWeight(weight[0]);
|
|
return true;
|
|
}
|
|
|
|
bool StaticData::LoadPhrasePairFeature()
|
|
{
|
|
const vector<float> &weight = Scan<float>(m_parameter->GetParam("weight-pp"));
|
|
if (weight.size() > 1) {
|
|
std::cerr << "Only one sparse producer weight allowed for the phrase pair feature" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
const vector<string> ¶meters = m_parameter->GetParam("phrase-pair-feature");
|
|
if (parameters.size() == 0) return true;
|
|
|
|
for (size_t i=0; i<parameters.size(); ++i) {
|
|
vector<string> tokens = Tokenize(parameters[i]);
|
|
if (! (tokens.size() >= 1 && tokens.size() <= 6)) {
|
|
UserMessage::Add("Format for phrase pair feature: --phrase-pair-feature <factor-src>-<factor-tgt> "
|
|
"[simple source-trigger] [ignore-punctuation] [domain-trigger] [filename-src]");
|
|
return false;
|
|
}
|
|
|
|
vector <string> factors;
|
|
if (tokens.size() == 2)
|
|
factors = Tokenize(tokens[0]," ");
|
|
else
|
|
factors = Tokenize(tokens[0],"-");
|
|
|
|
size_t sourceFactorId = Scan<size_t>(factors[0]);
|
|
size_t targetFactorId = Scan<size_t>(factors[1]);
|
|
bool simple = true, sourceContext = false, ignorePunctuation = false, domainTrigger = false;
|
|
if (tokens.size() >= 3) {
|
|
simple = Scan<size_t>(tokens[1]);
|
|
sourceContext = Scan<size_t>(tokens[2]);
|
|
}
|
|
if (tokens.size() >= 4)
|
|
ignorePunctuation = Scan<size_t>(tokens[3]);
|
|
if (tokens.size() >= 5)
|
|
domainTrigger = Scan<size_t>(tokens[4]);
|
|
|
|
m_phrasePairFeatures.push_back(new PhrasePairFeature(sourceFactorId, targetFactorId, simple, sourceContext,
|
|
ignorePunctuation, domainTrigger));
|
|
if (weight.size() > i)
|
|
m_phrasePairFeatures[i]->SetSparseProducerWeight(weight[i]);
|
|
|
|
// load word list
|
|
if (tokens.size() == 6) {
|
|
string filenameSource = tokens[5];
|
|
if (domainTrigger) {
|
|
const vector<string> &texttype = m_parameter->GetParam("text-type");
|
|
if (texttype.size() != 1) {
|
|
UserMessage::Add("Need texttype to load dictionary for domain triggers.");
|
|
return false;
|
|
}
|
|
stringstream filename(filenameSource + "." + texttype[0]);
|
|
filenameSource = filename.str();
|
|
cerr << "loading word translation term list from " << filenameSource << endl;
|
|
}
|
|
else {
|
|
cerr << "loading word translation word list from " << filenameSource << endl;
|
|
}
|
|
if (!m_phrasePairFeatures[i]->Load(filenameSource)) {
|
|
UserMessage::Add("Unable to load word lists for word translation feature from files " + filenameSource);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool StaticData::LoadPhraseLengthFeature()
|
|
{
|
|
if (m_parameter->isParamSpecified("phrase-length-feature")) {
|
|
m_phraseLengthFeature = new PhraseLengthFeature();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool StaticData::LoadTargetWordInsertionFeature()
|
|
{
|
|
const vector<string> ¶meters = m_parameter->GetParam("target-word-insertion-feature");
|
|
if (parameters.empty())
|
|
return true;
|
|
|
|
if (parameters.size() != 1) {
|
|
UserMessage::Add("Can only have one target-word-insertion-feature");
|
|
return false;
|
|
}
|
|
|
|
vector<string> tokens = Tokenize(parameters[0]);
|
|
if (tokens.size() != 1 && tokens.size() != 2) {
|
|
UserMessage::Add("Format of target word insertion feature parameter is: --target-word-insertion-feature <factor> [filename]");
|
|
return false;
|
|
}
|
|
|
|
m_needAlignmentInfo = true;
|
|
|
|
// set factor
|
|
FactorType factorId = Scan<size_t>(tokens[0]);
|
|
m_targetWordInsertionFeature = new TargetWordInsertionFeature(factorId);
|
|
|
|
// load word list for restricted feature set
|
|
if (tokens.size() == 2) {
|
|
string filename = tokens[1];
|
|
cerr << "loading target word insertion word list from " << filename << endl;
|
|
if (!m_targetWordInsertionFeature->Load(filename)) {
|
|
UserMessage::Add("Unable to load word list for target word insertion feature from file " + filename);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool StaticData::LoadSourceWordDeletionFeature()
|
|
{
|
|
const vector<string> ¶meters = m_parameter->GetParam("source-word-deletion-feature");
|
|
if (parameters.empty())
|
|
return true;
|
|
|
|
if (parameters.size() != 1) {
|
|
UserMessage::Add("Can only have one source-word-deletion-feature");
|
|
return false;
|
|
}
|
|
|
|
vector<string> tokens = Tokenize(parameters[0]);
|
|
if (tokens.size() != 1 && tokens.size() != 2) {
|
|
UserMessage::Add("Format of source word deletion feature parameter is: --source-word-deletion-feature <factor> [filename]");
|
|
return false;
|
|
}
|
|
|
|
m_needAlignmentInfo = true;
|
|
|
|
// set factor
|
|
FactorType factorId = Scan<size_t>(tokens[0]);
|
|
m_sourceWordDeletionFeature = new SourceWordDeletionFeature(factorId);
|
|
|
|
// load word list for restricted feature set
|
|
if (tokens.size() == 2) {
|
|
string filename = tokens[1];
|
|
cerr << "loading source word deletion word list from " << filename << endl;
|
|
if (!m_sourceWordDeletionFeature->Load(filename)) {
|
|
UserMessage::Add("Unable to load word list for source word deletion feature from file " + filename);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool StaticData::LoadWordTranslationFeature()
|
|
{
|
|
const vector<string> ¶meters = m_parameter->GetParam("word-translation-feature");
|
|
if (parameters.empty())
|
|
return true;
|
|
|
|
const vector<float> &weight = Scan<float>(m_parameter->GetParam("weight-wt"));
|
|
if (weight.size() != 1) {
|
|
std::cerr << "Only one sparse producer weight allowed for the word translation feature" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
m_needAlignmentInfo = true;
|
|
|
|
for (size_t i=0; i<parameters.size(); ++i) {
|
|
vector<string> tokens = Tokenize(parameters[i]);
|
|
if (tokens.size() != 1 && !(tokens.size() >= 4 && tokens.size() <= 8)) {
|
|
UserMessage::Add("Format of word translation feature parameter is: --word-translation-feature <factor-src>-<factor-tgt> "
|
|
"[simple source-trigger target-trigger] [ignore-punctuation] [domain-trigger] [filename-src] [filename-tgt]");
|
|
return false;
|
|
}
|
|
|
|
// set factor
|
|
vector <string> factors = Tokenize(tokens[0],"-");
|
|
FactorType factorIdSource = Scan<size_t>(factors[0]);
|
|
FactorType factorIdTarget = Scan<size_t>(factors[1]);
|
|
|
|
bool simple = true, sourceTrigger = false, targetTrigger = false, ignorePunctuation = false, domainTrigger = false;
|
|
if (tokens.size() >= 4) {
|
|
simple = Scan<size_t>(tokens[1]);
|
|
sourceTrigger = Scan<size_t>(tokens[2]);
|
|
targetTrigger = Scan<size_t>(tokens[3]);
|
|
}
|
|
if (tokens.size() >= 5) {
|
|
ignorePunctuation = Scan<size_t>(tokens[4]);
|
|
}
|
|
|
|
if (tokens.size() >= 6) {
|
|
domainTrigger = Scan<size_t>(tokens[5]);
|
|
}
|
|
|
|
m_wordTranslationFeatures.push_back(new WordTranslationFeature(factorIdSource, factorIdTarget, simple,
|
|
sourceTrigger, targetTrigger, ignorePunctuation, domainTrigger));
|
|
if (weight.size() > i)
|
|
m_wordTranslationFeatures[i]->SetSparseProducerWeight(weight[i]);
|
|
|
|
// load word list for restricted feature set
|
|
if (tokens.size() == 7) {
|
|
string filenameSource = tokens[6];
|
|
if (domainTrigger) {
|
|
const vector<string> &texttype = m_parameter->GetParam("text-type");
|
|
if (texttype.size() != 1) {
|
|
UserMessage::Add("Need texttype to load dictionary for domain triggers.");
|
|
return false;
|
|
}
|
|
stringstream filename(filenameSource + "." + texttype[0]);
|
|
filenameSource = filename.str();
|
|
cerr << "loading word translation term list from " << filenameSource << endl;
|
|
}
|
|
else {
|
|
cerr << "loading word translation word lists from " << filenameSource << endl;
|
|
}
|
|
if (!m_wordTranslationFeatures[i]->Load(filenameSource, "")) {
|
|
UserMessage::Add("Unable to load word lists for word translation feature from files " + filenameSource);
|
|
return false;
|
|
}
|
|
}
|
|
else if (tokens.size() == 8) {
|
|
string filenameSource = tokens[6];
|
|
string filenameTarget = tokens[7];
|
|
cerr << "loading word translation word lists from " << filenameSource << " and " << filenameTarget << endl;
|
|
if (!m_wordTranslationFeatures[i]->Load(filenameSource, filenameTarget)) {
|
|
UserMessage::Add("Unable to load word lists for word translation feature from files " + filenameSource + " and " + filenameTarget);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const TranslationOptionList* StaticData::FindTransOptListInCache(const DecodeGraph &decodeGraph, const Phrase &sourcePhrase) const
|
|
{
|
|
std::pair<size_t, Phrase> key(decodeGraph.GetPosition(), sourcePhrase);
|
|
#ifdef WITH_THREADS
|
|
boost::mutex::scoped_lock lock(m_transOptCacheMutex);
|
|
#endif
|
|
std::map<std::pair<size_t, Phrase>, std::pair<TranslationOptionList*,clock_t> >::iterator iter
|
|
= m_transOptCache.find(key);
|
|
if (iter == m_transOptCache.end())
|
|
return NULL;
|
|
iter->second.second = clock(); // update last used time
|
|
return iter->second.first;
|
|
}
|
|
|
|
void StaticData::ReduceTransOptCache() const
|
|
{
|
|
if (m_transOptCache.size() <= m_transOptCacheMaxSize) return; // not full
|
|
clock_t t = clock();
|
|
|
|
// find cutoff for last used time
|
|
priority_queue< clock_t > lastUsedTimes;
|
|
std::map<std::pair<size_t, Phrase>, std::pair<TranslationOptionList*,clock_t> >::iterator iter;
|
|
iter = m_transOptCache.begin();
|
|
while( iter != m_transOptCache.end() ) {
|
|
lastUsedTimes.push( iter->second.second );
|
|
iter++;
|
|
}
|
|
for( size_t i=0; i < lastUsedTimes.size()-m_transOptCacheMaxSize/2; i++ )
|
|
lastUsedTimes.pop();
|
|
clock_t cutoffLastUsedTime = lastUsedTimes.top();
|
|
|
|
// remove all old entries
|
|
iter = m_transOptCache.begin();
|
|
while( iter != m_transOptCache.end() ) {
|
|
if (iter->second.second < cutoffLastUsedTime) {
|
|
std::map<std::pair<size_t, Phrase>, std::pair<TranslationOptionList*,clock_t> >::iterator iterRemove = iter++;
|
|
delete iterRemove->second.first;
|
|
m_transOptCache.erase(iterRemove);
|
|
} else iter++;
|
|
}
|
|
VERBOSE(2,"Reduced persistent translation option cache in " << ((clock()-t)/(float)CLOCKS_PER_SEC) << " seconds." << std::endl);
|
|
}
|
|
|
|
void StaticData::AddTransOptListToCache(const DecodeGraph &decodeGraph, const Phrase &sourcePhrase, const TranslationOptionList &transOptList) const
|
|
{
|
|
if (m_transOptCacheMaxSize == 0) return;
|
|
std::pair<size_t, Phrase> key(decodeGraph.GetPosition(), sourcePhrase);
|
|
TranslationOptionList* storedTransOptList = new TranslationOptionList(transOptList);
|
|
#ifdef WITH_THREADS
|
|
boost::mutex::scoped_lock lock(m_transOptCacheMutex);
|
|
#endif
|
|
m_transOptCache[key] = make_pair( storedTransOptList, clock() );
|
|
ReduceTransOptCache();
|
|
}
|
|
void StaticData::ClearTransOptionCache() const {
|
|
map<std::pair<size_t, Phrase>, std::pair< TranslationOptionList*, clock_t > >::iterator iterCache;
|
|
for (iterCache = m_transOptCache.begin() ; iterCache != m_transOptCache.end() ; ++iterCache) {
|
|
TranslationOptionList *transOptList = iterCache->second.first;
|
|
delete transOptList;
|
|
}
|
|
}
|
|
|
|
void StaticData::ReLoadParameter()
|
|
{
|
|
m_verboseLevel = 1;
|
|
if (m_parameter->GetParam("verbose").size() == 1) {
|
|
m_verboseLevel = Scan<size_t>( m_parameter->GetParam("verbose")[0]);
|
|
}
|
|
|
|
// check whether "weight-u" is already set
|
|
if (m_parameter->isParamShortNameSpecified("u")) {
|
|
if (m_parameter->GetParamShortName("u").size() < 1 ) {
|
|
PARAM_VEC w(1,"1.0");
|
|
m_parameter->OverwriteParamShortName("u", w);
|
|
}
|
|
}
|
|
|
|
//loop over all ScoreProducer to update weights
|
|
const TranslationSystem &transSystem = GetTranslationSystem(TranslationSystem::DEFAULT);
|
|
|
|
std::vector<const ScoreProducer*>::const_iterator iterSP;
|
|
for (iterSP = transSystem.GetFeatureFunctions().begin() ; iterSP != transSystem.GetFeatureFunctions().end() ; ++iterSP) {
|
|
std::string paramShortName = (*iterSP)->GetScoreProducerWeightShortName();
|
|
vector<float> Weights = Scan<float>(m_parameter->GetParamShortName(paramShortName));
|
|
|
|
if (paramShortName == "d") { //basic distortion model takes the first weight
|
|
if ((*iterSP)->GetScoreProducerDescription() == "Distortion") {
|
|
Weights.resize(1); //take only the first element
|
|
} else { //lexicalized reordering model takes the other
|
|
Weights.erase(Weights.begin()); //remove the first element
|
|
}
|
|
// std::cerr << "this is the Distortion Score Producer -> " << (*iterSP)->GetScoreProducerDescription() << std::cerr;
|
|
// std::cerr << "this is the Distortion Score Producer; it has " << (*iterSP)->GetNumScoreComponents() << " weights"<< std::cerr;
|
|
// std::cerr << Weights << std::endl;
|
|
} else if (paramShortName == "tm") {
|
|
continue;
|
|
}
|
|
SetWeights(*iterSP, Weights);
|
|
}
|
|
|
|
// std::cerr << "There are " << m_phraseDictionary.size() << " m_phraseDictionaryfeatures" << std::endl;
|
|
|
|
const vector<float> WeightsTM = Scan<float>(m_parameter->GetParamShortName("tm"));
|
|
// std::cerr << "WeightsTM: " << WeightsTM << std::endl;
|
|
|
|
const vector<float> WeightsLM = Scan<float>(m_parameter->GetParamShortName("lm"));
|
|
// std::cerr << "WeightsLM: " << WeightsLM << std::endl;
|
|
|
|
size_t index_WeightTM = 0;
|
|
for(size_t i=0; i<transSystem.GetPhraseDictionaries().size(); ++i) {
|
|
PhraseDictionaryFeature &phraseDictionaryFeature = *m_phraseDictionary[i];
|
|
|
|
// std::cerr << "phraseDictionaryFeature.GetNumScoreComponents():" << phraseDictionaryFeature.GetNumScoreComponents() << std::endl;
|
|
// std::cerr << "phraseDictionaryFeature.GetNumInputScores():" << phraseDictionaryFeature.GetNumInputScores() << std::endl;
|
|
|
|
vector<float> tmp_weights;
|
|
for(size_t j=0; j<phraseDictionaryFeature.GetNumScoreComponents(); ++j)
|
|
tmp_weights.push_back(WeightsTM[index_WeightTM++]);
|
|
|
|
// std::cerr << tmp_weights << std::endl;
|
|
|
|
SetWeights(&phraseDictionaryFeature, tmp_weights);
|
|
}
|
|
|
|
}
|
|
|
|
void StaticData::ReLoadBleuScoreFeatureParameter(float weight)
|
|
{
|
|
//loop over ScoreProducers to update weights of BleuScoreFeature
|
|
const TranslationSystem &transSystem = GetTranslationSystem(TranslationSystem::DEFAULT);
|
|
|
|
std::vector<const ScoreProducer*>::const_iterator iterSP;
|
|
for (iterSP = transSystem.GetFeatureFunctions().begin() ; iterSP != transSystem.GetFeatureFunctions().end() ; ++iterSP) {
|
|
std::string paramShortName = (*iterSP)->GetScoreProducerWeightShortName();
|
|
if (paramShortName == "bl") {
|
|
SetWeight(*iterSP, weight);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ScoreComponentCollection StaticData::GetAllWeightsScoreComponentCollection() const {}
|
|
// in ScoreComponentCollection.h
|
|
|
|
void StaticData::SetExecPath(const std::string &path)
|
|
{
|
|
/*
|
|
namespace fs = boost::filesystem;
|
|
|
|
fs::path full_path( fs::initial_path<fs::path>() );
|
|
|
|
full_path = fs::system_complete( fs::path( path ) );
|
|
|
|
//Without file name
|
|
m_binPath = full_path.parent_path().string();
|
|
*/
|
|
|
|
// NOT TESTED
|
|
size_t pos = path.rfind("/");
|
|
if (pos != string::npos)
|
|
{
|
|
m_binPath = path.substr(0, pos);
|
|
}
|
|
cerr << m_binPath << endl;
|
|
}
|
|
|
|
const string &StaticData::GetBinDirectory() const
|
|
{
|
|
return m_binPath;
|
|
}
|
|
|
|
}
|
|
|
|
|