mosesdecoder/mert/mert.cpp
2010-01-08 15:12:28 +00:00

267 lines
6.8 KiB
C++
Executable File

/**
\description The is the main for the new version of the mert algorithm developed during the 2nd MT marathon
*/
#include <limits>
#include <unistd.h>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <cmath>
#include <ctime>
#include <getopt.h>
#include "Data.h"
#include "Point.h"
#include "Scorer.h"
#include "ScorerFactory.h"
#include "ScoreData.h"
#include "FeatureData.h"
#include "Optimizer.h"
#include "Types.h"
#include "Timer.h"
#include "Util.h"
float min_interval = 1e-3;
using namespace std;
void usage(void) {
cerr<<"usage: mert -d <dimensions> (mandatory )"<<endl;
cerr<<"[-n retry ntimes (default 1)]"<<endl;
cerr<<"[-o\tthe indexes to optimize(default all)]"<<endl;
cerr<<"[-t\tthe optimizer(default powell)]"<<endl;
cerr<<"[-r\tthe random seed (defaults to system clock)"<<endl;
cerr<<"[--sctype|-s] the scorer type (default BLEU)"<<endl;
cerr<<"[--scconfig|-c] configuration string passed to scorer"<<endl;
cerr<<"[--scfile|-S] comma separated list of scorer data files (default score.data)"<<endl;
cerr<<"[--ffile|-F] comma separated list of feature data files (default feature.data)"<<endl;
cerr<<"[--ifile|-i] the starting point data file (default init.opt)"<<endl;
cerr<<"[-v] verbose level"<<endl;
cerr<<"[--help|-h] print this message and exit"<<endl;
exit(1);
}
static struct option long_options[] =
{
{"pdim", 1, 0, 'd'},
{"ntry",1,0,'n'},
{"rseed",required_argument,0,'r'},
{"optimize",1,0,'o'},
{"type",1,0,'t'},
{"sctype",1,0,'s'},
{"scconfig",required_argument,0,'c'},
{"scfile",1,0,'S'},
{"ffile",1,0,'F'},
{"ifile",1,0,'i'},
{"verbose",1,0,'v'},
{"help",no_argument,0,'h'},
{0, 0, 0, 0}
};
int option_index;
int main (int argc, char **argv) {
ResetUserTime();
/*
Timer timer;
timer.start("Starting...");
*/
int c,pdim,i;
pdim=-1;
int ntry=1;
int seed=0;
bool hasSeed = false;
string type("powell");
string scorertype("BLEU");
string scorerconfig("");
string scorerfile("statscore.data");
string featurefile("features.data");
string initfile("init.opt");
string tooptimizestr("");
vector<unsigned> tooptimize;
vector<parameter_t> start;
while ((c=getopt_long (argc, argv, "o:r:d:n:t:s:S:F:v:", long_options, &option_index)) != -1) {
switch (c) {
case 'o':
tooptimizestr = string(optarg);
break;
case 'd':
pdim = strtol(optarg, NULL, 10);
break;
case 'n':
ntry=strtol(optarg, NULL, 10);
break;
case 'r':
seed=strtol(optarg, NULL, 10);
hasSeed = true;
break;
case 't':
type=string(optarg);
break;
case's':
scorertype=string(optarg);
break;
case 'c':
scorerconfig = string(optarg);
break;
case 'S':
scorerfile=string(optarg);
break;
case 'F':
featurefile=string(optarg);
break;
case 'i':
initfile=string(optarg);
break;
case 'v':
setverboselevel(strtol(optarg,NULL,10));
break;
default:
usage();
}
}
if (pdim < 0)
usage();
if (hasSeed) {
cerr << "Seeding random numbers with " << seed << endl;
srandom(seed);
} else {
cerr << "Seeding random numbers with system clock " << endl;
srandom(time(NULL));
}
ifstream opt(initfile.c_str());
if(opt.fail()){
cerr<<"could not open initfile: " << initfile << endl;
exit(3);
}
start.resize(pdim);//to do:read from file
int j;
for( j=0;j<pdim&&!opt.fail();j++)
opt>>start[j];
if(j<pdim){
cerr<<"error could not initialize start point with " << initfile << endl;
exit(3);
}
opt.close();
vector<string> ScoreDataFiles;
if (scorerfile.length() > 0){
std::string substring;
while (!scorerfile.empty()){
getNextPound(scorerfile, substring, ",");
ScoreDataFiles.push_back(substring);
}
}
vector<string> FeatureDataFiles;
if (featurefile.length() > 0){
std::string substring;
while (!featurefile.empty()){
getNextPound(featurefile, substring, ",");
FeatureDataFiles.push_back(substring);
}
}
if (ScoreDataFiles.size() != FeatureDataFiles.size()){
throw runtime_error("Error: there is a different number of previous score and feature files");
}
//it make sense to know what parameter set were used to generate the nbest
ScorerFactory SF;
Scorer *TheScorer=SF.getScorer(scorertype,scorerconfig);
//load data
Data D(*TheScorer);
for (size_t i=0;i < ScoreDataFiles.size(); i++){
cerr<<"Loading Data from: "<< ScoreDataFiles.at(i) << " and " << FeatureDataFiles.at(i) << endl;
D.load(FeatureDataFiles.at(i), ScoreDataFiles.at(i));
}
PrintUserTime("Data loaded");
if (tooptimizestr.length() > 0){
cerr << "Weights to optimize: " << tooptimizestr << endl;
//parse string to get weights to optimize
//and set them as active
std::string substring;
int index;
while (!tooptimizestr.empty()){
getNextPound(tooptimizestr, substring, ",");
index = D.getFeatureIndex(substring);
cerr << "FeatNameIndex:" << index << " to insert" << endl;
//index = strtol(substring.c_str(), NULL, 10);
if (index >= 0 && index < pdim){ tooptimize.push_back(index); }
else{ cerr << "Index " << index << " is out of bounds. Allowed indexes are [0," << (pdim-1) << "]." << endl; }
}
}else{
//set all weights as active
tooptimize.resize(pdim);//We'll optimize on everything
for(int i=0;i<pdim;i++){ tooptimize[i]=1; }
}
Optimizer *O=OptimizerFactory::BuildOptimizer(pdim,tooptimize,start,type);
O->SetScorer(TheScorer);
O->SetFData(D.getFeatureData());
Point P(start);//Generate from the full feature set. Warning: must be done after Optimizer initialization
statscore_t best=O->Run(P);
Point bestP=P;
statscore_t mean=best;
statscore_t var=best*best;
stringstream oss;
oss << "Try number 1";
PrintUserTime(oss.str());
vector<parameter_t> min(Point::getdim());
vector<parameter_t> max(Point::getdim());
for(unsigned int d=0;d<Point::getdim();d++){
min[d]=0.0;
max[d]=1.0;
}
//note: those mins and max are the bound for the starting points of the algorithm, not strict bound on the result!
for(int i=1;i<ntry;i++){
P.Randomize(min,max);
statscore_t score=O->Run(P);
if(score>best){
best=score;
bestP=P;
}
mean+=score;
var+=(score*score);
oss.str("");
oss << "Try number " << (i+1);
PrintUserTime(oss.str());
}
mean/=(float)ntry;
var/=(float)ntry;
var=sqrt(abs(var-mean*mean));
if (verboselevel()>1)
cerr<<"best score: "<< best << " variance of the score (for "<<ntry<<" try): "<<var<<endl;
//L1-Normalization of the best Point
bestP.NormalizeL1();
cerr << "Best point: " << bestP << " => " << best << endl;
ofstream res("weights.txt");
res<<bestP<<endl;
PrintUserTime("Stopping...");
}