mosesdecoder/mert/Optimizer.cpp
Tetsuo Kiso 29c16d252a Minimize using #include headers in headers.
Should use it in .cpp files.
2011-11-14 15:15:30 +09:00

537 lines
18 KiB
C++

#include "Optimizer.h"
#include <cmath>
#include <cassert>
#include <vector>
#include <limits>
#include <map>
#include <cfloat>
#include <iostream>
#include "Point.h"
#include "Util.h"
using namespace std;
static const float MIN_FLOAT = -1.0 * numeric_limits<float>::max();
static const float MAX_FLOAT = numeric_limits<float>::max();
namespace {
/**
* Compute the intersection of 2 lines.
*/
inline float intersect(float m1, float b1, float m2, float b2)
{
float isect = (b2 - b1) / (m1 - m2);
if (!isfinite(isect)) {
isect = MAX_FLOAT;
}
return isect;
}
} // namespace
void Optimizer::SetScorer(Scorer *_scorer)
{
scorer = _scorer;
}
void Optimizer::SetFData(FeatureData *_FData)
{
FData = _FData;
}
Optimizer::Optimizer(unsigned Pd, vector<unsigned> i2O, vector<parameter_t> start, unsigned int nrandom)
: scorer(NULL), FData(NULL), number_of_random_directions(nrandom)
{
// Warning: the init vector is a full set of parameters, of dimension pdim!
Point::pdim = Pd;
assert(start.size() == Pd);
Point::dim = i2O.size();
Point::optindices = i2O;
if (Point::pdim > Point::dim) {
for (unsigned int i = 0; i < Point::pdim; i++) {
unsigned int j = 0;
while (j < Point::dim && i != i2O[j])
j++;
// The index i wasnt found on optindices, it is a fixed index,
// we use the value of the start vector.
if (j == Point::dim)
Point::fixedweights[i] = start[i];
}
}
}
Optimizer::~Optimizer() {}
statscore_t Optimizer::GetStatScore(const Point& param) const
{
vector<unsigned> bests;
Get1bests(param, bests);
//copy(bests.begin(),bests.end(),ostream_iterator<unsigned>(cerr," "));
statscore_t score = GetStatScore(bests);
return score;
}
map<float,diff_t >::iterator AddThreshold(map<float,diff_t >& thresholdmap, float newt, pair<unsigned,unsigned> newdiff)
{
map<float,diff_t>::iterator it = thresholdmap.find(newt);
if (it != thresholdmap.end()) {
// the threshold already exists!! this is very unlikely
if (it->second.back().first == newdiff.first)
// there was already a diff for this sentence, we change the 1 best;
it->second.back().second = newdiff.second;
else
it->second.push_back(newdiff);
} else {
// normal case
pair<map<float,diff_t>::iterator, bool> ins = thresholdmap.insert(threshold(newt, diff_t(1, newdiff)));
assert(ins.second); // we really inserted something
it = ins.first;
}
return it;
}
statscore_t Optimizer::LineOptimize(const Point& origin, const Point& direction, Point& bestpoint) const
{
// We are looking for the best Point on the line y=Origin+x*direction
float min_int = 0.0001;
//typedef pair<unsigned,unsigned> diff;//first the sentence that changes, second is the new 1best for this sentence
//list<threshold> thresholdlist;
map<float,diff_t> thresholdmap;
thresholdmap[MIN_FLOAT] = diff_t();
vector<unsigned> first1best; // the vector of nbests for x=-inf
for (unsigned int S = 0; S < size(); S++) {
map<float,diff_t >::iterator previnserted = thresholdmap.begin();
// First, we determine the translation with the best feature score
// for each sentence and each value of x.
//cerr << "Sentence " << S << endl;
multimap<float, unsigned> gradient;
vector<float> f0;
f0.resize(FData->get(S).size());
for (unsigned j = 0; j < FData->get(S).size(); j++) {
// gradient of the feature function for this particular target sentence
gradient.insert(pair<float, unsigned>(direction * (FData->get(S,j)), j));
// compute the feature function at the origin point
f0[j] = origin * FData->get(S, j);
}
// Now let's compute the 1best for each value of x.
// vector<pair<float,unsigned> > onebest;
multimap<float,unsigned>::iterator gradientit = gradient.begin();
multimap<float,unsigned>::iterator highest_f0 = gradient.begin();
float smallest = gradientit->first;//smallest gradient
// Several candidates can have the lowest slope (e.g., for word penalty where the gradient is an integer).
gradientit++;
while (gradientit != gradient.end() && gradientit->first == smallest) {
// cerr<<"ni"<<gradientit->second<<endl;;
//cerr<<"fos"<<f0[gradientit->second]<<" "<<f0[index]<<" "<<index<<endl;
if (f0[gradientit->second] > f0[highest_f0->second])
highest_f0 = gradientit;//the highest line is the one with he highest f0
gradientit++;
}
gradientit = highest_f0;
first1best.push_back(highest_f0->second);
// Now we look for the intersections points indicating a change of 1 best.
// We use the fact that the function is convex, which means that the gradient can only go up.
while (gradientit != gradient.end()) {
map<float,unsigned>::iterator leftmost = gradientit;
float m = gradientit->first;
float b = f0[gradientit->second];
multimap<float,unsigned>::iterator gradientit2 = gradientit;
gradientit2++;
float leftmostx = MAX_FLOAT;
for (; gradientit2 != gradient.end(); gradientit2++) {
//cerr<<"--"<<d++<<' '<<gradientit2->first<<' '<<gradientit2->second<<endl;
// Look for all candidate with a gradient bigger than the current one, and
// find the one with the leftmost intersection.
float curintersect;
if (m != gradientit2->first) {
curintersect = intersect(m, b, gradientit2->first, f0[gradientit2->second]);
//cerr << "curintersect: " << curintersect << " leftmostx: " << leftmostx << endl;
if (curintersect<=leftmostx) {
// We have found an intersection to the left of the leftmost we had so far.
// We might have curintersect==leftmostx for example is 2 candidates are the same
// in that case its better its better to update leftmost to gradientit2 to avoid some recomputing later.
leftmostx = curintersect;
leftmost = gradientit2; // this is the new reference
}
}
}
if (leftmost == gradientit) {
// We didn't find any more intersections.
// The rightmost bestindex is the one with the highest slope.
// They should be equal but there might be.
assert(abs(leftmost->first-gradient.rbegin()->first) < 0.0001);
// A small difference due to rounding error
break;
}
// We have found the next intersection!
pair<unsigned,unsigned> newd(S, leftmost->second);//new onebest for Sentence S is leftmost->second
if (leftmostx-previnserted->first < min_int) {
// Require that the intersection Point be at least min_int to the right of the previous
// one (for this sentence). If not, we replace the previous intersection Point with
// this one.
// Yes, it can even happen that the new intersection Point is slightly to the left of
// the old one, because of numerical imprecision. We do not check that we are to the
// right of the penultimate point also. It this happen the 1best the interval will
// be wrong we are going to replace previnsert by the new one because we do not want to keep
// 2 very close threshold: if the minima is there it could be an artifact.
map<float,diff_t>::iterator tit = thresholdmap.find(leftmostx);
if (tit == previnserted) {
// The threshold is the same as before can happen if 2 candidates are the same for example.
assert(previnserted->second.back().first == newd.first);
previnserted->second.back()=newd; // just replace the 1 best for sentence S
// previnsert doesn't change
} else {
if (tit == thresholdmap.end()) {
thresholdmap[leftmostx]=previnserted->second; // We keep the diffs at previnsert
thresholdmap.erase(previnserted); // erase old previnsert
previnserted = thresholdmap.find(leftmostx); // point previnsert to the new threshold
previnserted->second.back()=newd; // We update the diff for sentence S
// Threshold already exists but is not the previous one.
} else {
// We append the diffs in previnsert to tit before destroying previnsert.
tit->second.insert(tit->second.end(),previnserted->second.begin(),previnserted->second.end());
assert(tit->second.back().first == newd.first);
tit->second.back()=newd; // change diff for sentence S
thresholdmap.erase(previnserted); // erase old previnsert
previnserted = tit; // point previnsert to the new threshold
}
}
assert(previnserted != thresholdmap.end());
} else { //normal insertion process
previnserted = AddThreshold(thresholdmap, leftmostx, newd);
}
gradientit = leftmost;
} // while (gradientit!=gradient.end()){
} // loop on S
// Now the thresholdlist is up to date: it contains a list of all the parameter_ts where
// the function changed its value, along with the nbest list for the interval after each threshold.
map<float,diff_t >::iterator thrit;
if (verboselevel() > 6) {
cerr << "Thresholds:(" << thresholdmap.size() << ")" << endl;
for (thrit = thresholdmap.begin(); thrit != thresholdmap.end(); thrit++) {
cerr << "x: " << thrit->first << " diffs";
for (size_t j = 0; j < thrit->second.size(); ++j) {
cerr << " " <<thrit->second[j].first << "," << thrit->second[j].second;
}
cerr << endl;
}
}
// Last thing to do is compute the Stat score (i.e., BLEU) and find the minimum.
thrit = thresholdmap.begin();
++thrit; // first diff corrrespond to MIN_FLOAT and first1best
diffs_t diffs;
for (; thrit != thresholdmap.end(); thrit++)
diffs.push_back(thrit->second);
vector<statscore_t> scores = GetIncStatScore(first1best, diffs);
thrit = thresholdmap.begin();
statscore_t bestscore = MIN_FLOAT;
float bestx = MIN_FLOAT;
// We skipped the first el of thresholdlist but GetIncStatScore return 1 more for first1best.
assert(scores.size() == thresholdmap.size());
for (unsigned int sc = 0; sc != scores.size(); sc++) {
//cerr << "x=" << thrit->first << " => " << scores[sc] << endl;
if (scores[sc] > bestscore) {
// This is the score for the interval [lit2->first, (lit2+1)->first]
// unless we're at the last score, when it's the score
// for the interval [lit2->first,+inf].
bestscore = scores[sc];
// If we're not in [-inf,x1] or [xn,+inf], then just take the value
// if x which splits the interval in half. For the rightmost interval,
// take x to be the last interval boundary + 0.1, and for the leftmost
// interval, take x to be the first interval boundary - 1000.
// These values are taken from cmert.
float leftx = thrit->first;
if (thrit == thresholdmap.begin()) {
leftx = MIN_FLOAT;
}
++thrit;
float rightx = MAX_FLOAT;
if (thrit != thresholdmap.end()) {
rightx = thrit->first;
}
--thrit;
//cerr << "leftx: " << leftx << " rightx: " << rightx << endl;
if (leftx == MIN_FLOAT) {
bestx = rightx-1000;
} else if (rightx == MAX_FLOAT) {
bestx = leftx + 0.1;
} else {
bestx = 0.5 * (rightx + leftx);
}
//cerr << "x = " << "set new bestx to: " << bestx << endl;
}
++thrit;
}
if (abs(bestx) < 0.00015) {
// The origin of the line is the best point! We put it back at 0
// so we do not propagate rounding erros.
bestx = 0.0;
// Finally, we manage to extract the best score;
// now we convert bestx (position on the line) to a point.
if (verboselevel() > 4)
cerr << "best point on line at origin" << endl;
}
if (verboselevel() > 3) {
// cerr<<"end Lineopt, bestx="<<bestx<<endl;
}
bestpoint = direction * bestx + origin;
bestpoint.SetScore(bestscore);
return bestscore;
}
void Optimizer::Get1bests(const Point& P, vector<unsigned>& bests) const
{
assert(FData);
bests.clear();
bests.resize(size());
for (unsigned i = 0; i < size(); i++) {
float bestfs = MIN_FLOAT;
unsigned idx = 0;
unsigned j;
for (j = 0; j < FData->get(i).size(); j++) {
float curfs = P * FData->get(i, j);
if (curfs > bestfs) {
bestfs = curfs;
idx = j;
}
}
bests[i]=idx;
}
}
statscore_t Optimizer::Run(Point& P) const
{
if (!FData) {
cerr << "error trying to optimize without Features loaded" << endl;
exit(2);
}
if (!scorer) {
cerr << "error trying to optimize without a Scorer loaded" << endl;
exit(2);
}
if (scorer->getReferenceSize() != FData->size()) {
cerr << "error length mismatch between feature file and score file" << endl;
exit(2);
}
P.SetScore(GetStatScore(P));
if (verboselevel () > 2) {
cerr << "Starting point: " << P << " => " << P.GetScore() << endl;
}
statscore_t score = TrueRun(P);
// just in case its not done in TrueRun
P.SetScore(score);
if (verboselevel() > 2) {
cerr << "Ending point: " << P << " => " << score << endl;
}
return score;
}
vector<statscore_t> Optimizer::GetIncStatScore(vector<unsigned> thefirst, vector<vector <pair<unsigned,unsigned> > > thediffs) const
{
assert(scorer);
vector<statscore_t> theres;
scorer->score(thefirst, thediffs, theres);
return theres;
}
statscore_t SimpleOptimizer::TrueRun(Point& P) const
{
statscore_t prevscore = 0;
statscore_t bestscore = MIN_FLOAT;
Point best;
// If P is already defined and provides a score,
// We must improve over this score.
if (P.GetScore() > bestscore) {
bestscore = P.GetScore();
best = P;
}
int nrun = 0;
do {
++nrun;
if (verboselevel() > 2 && nrun > 1)
cerr << "last diff=" << bestscore-prevscore << " nrun " << nrun << endl;
prevscore = bestscore;
Point linebest;
for (unsigned int d = 0; d < Point::getdim()+number_of_random_directions; d++) {
if (verboselevel() > 4) {
// cerr<<"minimizing along direction "<<d<<endl;
cerr << "starting point: " << P << " => " << prevscore << endl;
}
Point direction;
if (d < Point::getdim()) { // regular updates along one dimension
for (unsigned int i = 0; i < Point::getdim(); i++)
direction[i]=0.0;
direction[d]=1.0;
}
else { // random direction update
direction.Randomize();
}
statscore_t curscore = LineOptimize(P, direction, linebest);//find the minimum on the line
if (verboselevel() > 5) {
cerr << "direction: " << d << " => " << curscore << endl;
cerr << "\tending point: "<< linebest << " => " << curscore << endl;
}
if (curscore > bestscore) {
bestscore = curscore;
best = linebest;
if (verboselevel() > 3) {
cerr << "new best dir:" << d << " (" << nrun << ")" << endl;
cerr << "new best Point " << best << " => " << curscore << endl;
}
}
}
P = best; //update the current vector with the best point on all line tested
if (verboselevel() > 3)
cerr << nrun << "\t" << P << endl;
} while (bestscore-prevscore > kEPS);
if (verboselevel() > 2) {
cerr << "end Powell Algo, nrun=" << nrun << endl;
cerr << "last diff=" << bestscore-prevscore << endl;
cerr << "\t" << P << endl;
}
return bestscore;
}
statscore_t RandomDirectionOptimizer::TrueRun(Point& P) const
{
statscore_t prevscore = P.GetScore();
// do specified number of random direction optimizations
unsigned int nrun = 0;
unsigned int nrun_no_change = 0;
for (; nrun_no_change < number_of_random_directions; nrun++, nrun_no_change++)
{
// choose a random direction in which to optimize
Point direction;
direction.Randomize();
//find the minimum on the line
statscore_t score = LineOptimize(P, direction, P);
if (verboselevel() > 4) {
cerr << "direction: " << direction << " => " << score;
cerr << " (" << (score-prevscore) << ")" << endl;
cerr << "\tending point: " << P << " => " << score << endl;
}
if (score-prevscore > kEPS)
nrun_no_change = 0;
prevscore = score;
}
if (verboselevel() > 2) {
cerr << "end Powell Algo, nrun=" << nrun << endl;
}
return prevscore;
}
statscore_t RandomOptimizer::TrueRun(Point& P) const
{
P.Randomize();
statscore_t score = GetStatScore(P);
P.SetScore(score);
return score;
}
//--------------------------------------
vector<string> OptimizerFactory::typenames;
void OptimizerFactory::SetTypeNames()
{
if (typenames.empty()) {
typenames.resize(NOPTIMIZER);
typenames[POWELL]="powell";
typenames[RANDOM_DIRECTION]="random-direction";
typenames[RANDOM]="random";
// Add new type there
}
}
vector<string> OptimizerFactory::GetTypeNames()
{
if (typenames.empty())
SetTypeNames();
return typenames;
}
OptimizerFactory::OptType OptimizerFactory::GetOType(string type)
{
unsigned int thetype;
if (typenames.empty())
SetTypeNames();
for (thetype = 0; thetype < typenames.size(); thetype++)
if (typenames[thetype] == type)
break;
return((OptType)thetype);
}
Optimizer* OptimizerFactory::BuildOptimizer(unsigned dim, vector<unsigned> i2o, vector<parameter_t> start, string type, unsigned int nrandom)
{
OptType T = GetOType(type);
if (T == NOPTIMIZER) {
cerr << "Error: unknown Optimizer type " << type << endl;
cerr << "Known Algorithm are:" << endl;
unsigned int thetype;
for (thetype = 0; thetype < typenames.size(); thetype++)
cerr << typenames[thetype] << endl;
throw ("unknown Optimizer Type");
}
switch ((OptType)T) {
case POWELL:
return new SimpleOptimizer(dim, i2o, start, nrandom);
break;
case RANDOM_DIRECTION:
return new RandomDirectionOptimizer(dim, i2o, start, nrandom);
break;
case RANDOM:
return new RandomOptimizer(dim, i2o, start, nrandom);
break;
default:
cerr << "Error: unknown optimizer" << type << endl;
return NULL;
}
}