mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-26 13:23:25 +03:00
575 lines
19 KiB
C++
575 lines
19 KiB
C++
// -*- c++ -*-
|
|
// $Id$
|
|
// vim:tabstop=2
|
|
|
|
#ifndef moses_PDTAimp_h
|
|
#define moses_PDTAimp_h
|
|
|
|
#include "StaticData.h" // needed for factor splitter
|
|
#include "moses/TranslationModel/PhraseDictionaryTree.h"
|
|
#include "UniqueObject.h"
|
|
#include "InputFileStream.h"
|
|
#include "moses/TranslationModel/PhraseDictionaryTreeAdaptor.h"
|
|
#include "Util.h"
|
|
#include "util/tokenize_piece.hh"
|
|
#include "moses/FF/InputFeature.h"
|
|
|
|
namespace Moses
|
|
{
|
|
|
|
inline double addLogScale(double x,double y)
|
|
{
|
|
if(x>y) return addLogScale(y,x);
|
|
else return x+log(1.0+exp(y-x));
|
|
}
|
|
|
|
inline double Exp(double x)
|
|
{
|
|
return exp(x);
|
|
}
|
|
|
|
/** implementation of the binary phrase table for the phrase-based decoder. Used by PhraseDictionaryTreeAdaptor
|
|
*/
|
|
class PDTAimp
|
|
{
|
|
// only these classes are allowed to instantiate this class
|
|
friend class PhraseDictionaryTreeAdaptor;
|
|
|
|
protected:
|
|
PDTAimp(PhraseDictionaryTreeAdaptor *p)
|
|
: m_dict(0),
|
|
m_obj(p),
|
|
useCache(1),
|
|
totalE(0),
|
|
distinctE(0) {
|
|
m_numInputScores = 0;
|
|
const StaticData &staticData = StaticData::Instance();
|
|
m_inputFeature = staticData.GetInputFeature();
|
|
|
|
if (m_inputFeature) {
|
|
const PhraseDictionary *firstPt = staticData.GetPhraseDictionaries()[0];
|
|
if (firstPt == m_obj) {
|
|
m_numInputScores = m_inputFeature->GetNumScoreComponents();
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
std::vector<FactorType> m_input,m_output;
|
|
PhraseDictionaryTree *m_dict;
|
|
const InputFeature *m_inputFeature;
|
|
typedef std::vector<TargetPhraseCollectionWithSourcePhrase const*> vTPC;
|
|
mutable vTPC m_tgtColls;
|
|
|
|
typedef std::map<Phrase,TargetPhraseCollectionWithSourcePhrase const*> MapSrc2Tgt;
|
|
mutable MapSrc2Tgt m_cache;
|
|
PhraseDictionaryTreeAdaptor *m_obj;
|
|
int useCache;
|
|
|
|
std::vector<vTPC> m_rangeCache;
|
|
unsigned m_numInputScores;
|
|
|
|
UniqueObjectManager<Phrase> uniqSrcPhr;
|
|
|
|
size_t totalE,distinctE;
|
|
std::vector<size_t> path1Best,pathExplored;
|
|
std::vector<double> pathCN;
|
|
|
|
~PDTAimp() {
|
|
CleanUp();
|
|
delete m_dict;
|
|
|
|
if (StaticData::Instance().GetVerboseLevel() >= 2) {
|
|
|
|
TRACE_ERR("tgt candidates stats: total="<<totalE<<"; distinct="
|
|
<<distinctE<<" ("<<distinctE/(0.01*totalE)<<"); duplicates="
|
|
<<totalE-distinctE<<" ("<<(totalE-distinctE)/(0.01*totalE)
|
|
<<")\n");
|
|
|
|
TRACE_ERR("\npath statistics\n");
|
|
|
|
if(path1Best.size()) {
|
|
TRACE_ERR("1-best: ");
|
|
std::copy(path1Best.begin()+1,path1Best.end(),
|
|
std::ostream_iterator<size_t>(std::cerr," \t"));
|
|
TRACE_ERR("\n");
|
|
}
|
|
if(pathCN.size()) {
|
|
TRACE_ERR("CN (full): ");
|
|
std::transform(pathCN.begin()+1
|
|
,pathCN.end()
|
|
,std::ostream_iterator<double>(std::cerr," \t")
|
|
,Exp);
|
|
TRACE_ERR("\n");
|
|
}
|
|
if(pathExplored.size()) {
|
|
TRACE_ERR("CN (explored): ");
|
|
std::copy(pathExplored.begin()+1,pathExplored.end(),
|
|
std::ostream_iterator<size_t>(std::cerr," \t"));
|
|
TRACE_ERR("\n");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void Factors2String(Word const& w,std::string& s) const {
|
|
s=w.GetString(m_input,false);
|
|
}
|
|
|
|
void CleanUp() {
|
|
CHECK(m_dict);
|
|
m_dict->FreeMemory();
|
|
for(size_t i=0; i<m_tgtColls.size(); ++i) delete m_tgtColls[i];
|
|
m_tgtColls.clear();
|
|
m_cache.clear();
|
|
m_rangeCache.clear();
|
|
uniqSrcPhr.clear();
|
|
}
|
|
|
|
TargetPhraseCollectionWithSourcePhrase const*
|
|
GetTargetPhraseCollection(Phrase const &src) const {
|
|
|
|
CHECK(m_dict);
|
|
if(src.GetSize()==0) return 0;
|
|
|
|
std::pair<MapSrc2Tgt::iterator,bool> piter;
|
|
if(useCache) {
|
|
piter=m_cache.insert(std::make_pair(src,static_cast<TargetPhraseCollectionWithSourcePhrase const*>(0)));
|
|
if(!piter.second) return piter.first->second;
|
|
} else if (m_cache.size()) {
|
|
MapSrc2Tgt::const_iterator i=m_cache.find(src);
|
|
return (i!=m_cache.end() ? i->second : 0);
|
|
}
|
|
|
|
std::vector<std::string> srcString(src.GetSize());
|
|
// convert source Phrase into vector of strings
|
|
for(size_t i=0; i<srcString.size(); ++i) {
|
|
Factors2String(src.GetWord(i),srcString[i]);
|
|
}
|
|
|
|
// get target phrases in string representation
|
|
std::vector<StringTgtCand> cands;
|
|
std::vector<std::string> wacands;
|
|
m_dict->GetTargetCandidates(srcString,cands,wacands);
|
|
if(cands.empty()) {
|
|
return 0;
|
|
}
|
|
|
|
//TODO: Multiple models broken here
|
|
std::vector<float> weights = StaticData::Instance().GetWeights(m_obj);
|
|
|
|
std::vector<TargetPhrase> tCands;
|
|
tCands.reserve(cands.size());
|
|
|
|
std::vector<std::pair<float,size_t> > costs;
|
|
costs.reserve(cands.size());
|
|
|
|
std::vector<Phrase> sourcePhrases;
|
|
sourcePhrases.reserve(cands.size());
|
|
|
|
|
|
// convert into TargetPhrases
|
|
for(size_t i=0; i<cands.size(); ++i) {
|
|
TargetPhrase targetPhrase;
|
|
|
|
StringTgtCand::Tokens const& factorStrings=cands[i].tokens;
|
|
Scores const& probVector=cands[i].scores;
|
|
|
|
std::vector<float> scoreVector(probVector.size());
|
|
std::transform(probVector.begin(),probVector.end(),scoreVector.begin(),
|
|
TransformScore);
|
|
std::transform(scoreVector.begin(),scoreVector.end(),scoreVector.begin(),
|
|
FloorScore);
|
|
|
|
//sparse features.
|
|
//These are already in log-space
|
|
for (size_t j = 0; j < cands[i].fnames.size(); ++j) {
|
|
targetPhrase.GetScoreBreakdown().Assign(m_obj, *cands[i].fnames[j], cands[i].fvalues[j]);
|
|
}
|
|
|
|
CreateTargetPhrase(targetPhrase,factorStrings,scoreVector, Scores(0), &wacands[i], &src);
|
|
|
|
costs.push_back(std::make_pair(-targetPhrase.GetFutureScore(),tCands.size()));
|
|
tCands.push_back(targetPhrase);
|
|
|
|
sourcePhrases.push_back(src);
|
|
}
|
|
|
|
TargetPhraseCollectionWithSourcePhrase *rv;
|
|
rv=PruneTargetCandidates(tCands,costs, sourcePhrases);
|
|
if(rv->IsEmpty()) {
|
|
delete rv;
|
|
return 0;
|
|
} else {
|
|
if(useCache) piter.first->second=rv;
|
|
m_tgtColls.push_back(rv);
|
|
return rv;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Create(const std::vector<FactorType> &input
|
|
, const std::vector<FactorType> &output
|
|
, const std::string &filePath
|
|
, const std::vector<float> &weight
|
|
) {
|
|
|
|
// set my members
|
|
m_dict=new PhraseDictionaryTree();
|
|
m_input=input;
|
|
m_output=output;
|
|
|
|
const StaticData &staticData = StaticData::Instance();
|
|
m_dict->NeedAlignmentInfo(staticData.NeedAlignmentInfo());
|
|
|
|
std::string binFname=filePath+".binphr.idx";
|
|
if(!FileExists(binFname.c_str())) {
|
|
UserMessage::Add( "bin ttable does not exist\n");
|
|
abort();
|
|
//TRACE_ERR( "bin ttable does not exist -> create it\n");
|
|
//InputFileStream in(filePath);
|
|
//m_dict->Create(in,filePath);
|
|
}
|
|
TRACE_ERR( "reading bin ttable\n");
|
|
// m_dict->Read(filePath);
|
|
bool res=m_dict->Read(filePath);
|
|
if (!res) {
|
|
std::stringstream strme;
|
|
strme << "bin ttable was read in a wrong way\n";
|
|
UserMessage::Add(strme.str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
typedef PhraseDictionaryTree::PrefixPtr PPtr;
|
|
typedef unsigned short Position;
|
|
typedef std::pair<Position,Position> Range;
|
|
struct State {
|
|
PPtr ptr;
|
|
Range range;
|
|
std::vector<float> scores;
|
|
Phrase src;
|
|
|
|
State() : range(0,0),scores(0),src(ARRAY_SIZE_INCR) {}
|
|
State(Position b,Position e,const PPtr& v,const std::vector<float>& sv=std::vector<float>(0))
|
|
: ptr(v),range(b,e),scores(sv),src(ARRAY_SIZE_INCR) {}
|
|
State(Range const& r,const PPtr& v,const std::vector<float>& sv=std::vector<float>(0))
|
|
: ptr(v),range(r),scores(sv),src(ARRAY_SIZE_INCR) {}
|
|
|
|
Position begin() const {
|
|
return range.first;
|
|
}
|
|
Position end() const {
|
|
return range.second;
|
|
}
|
|
std::vector<float> GetScores() const {
|
|
return scores;
|
|
}
|
|
|
|
friend std::ostream& operator<<(std::ostream& out,State const& s) {
|
|
out<<" R=("<<s.begin()<<","<<s.end()<<"),";
|
|
for(std::vector<float>::const_iterator scoreIterator = s.GetScores().begin(); scoreIterator<s.GetScores().end(); scoreIterator++) {
|
|
out<<", "<<*scoreIterator;
|
|
}
|
|
out<<")";
|
|
return out;
|
|
}
|
|
|
|
};
|
|
|
|
void CreateTargetPhrase(TargetPhrase& targetPhrase,
|
|
StringTgtCand::Tokens const& factorStrings,
|
|
Scores const& transVector,
|
|
Scores const& inputVector,
|
|
const std::string *alignmentString,
|
|
Phrase const* srcPtr=0) const {
|
|
FactorCollection &factorCollection = FactorCollection::Instance();
|
|
|
|
for(size_t k=0; k<factorStrings.size(); ++k) {
|
|
util::TokenIter<util::MultiCharacter, false> word(*factorStrings[k], StaticData::Instance().GetFactorDelimiter());
|
|
Word& w=targetPhrase.AddWord();
|
|
for(size_t l=0; l<m_output.size(); ++l, ++word) {
|
|
w[m_output[l]]= factorCollection.AddFactor(*word);
|
|
}
|
|
}
|
|
|
|
if (alignmentString) {
|
|
targetPhrase.SetAlignmentInfo(*alignmentString);
|
|
}
|
|
|
|
if (m_numInputScores) {
|
|
targetPhrase.GetScoreBreakdown().Assign(m_inputFeature, inputVector);
|
|
}
|
|
|
|
targetPhrase.GetScoreBreakdown().Assign(m_obj, transVector);
|
|
targetPhrase.Evaluate(*srcPtr, m_obj->GetFeaturesToApply());
|
|
}
|
|
|
|
TargetPhraseCollectionWithSourcePhrase* PruneTargetCandidates
|
|
(const std::vector<TargetPhrase> & tCands,
|
|
std::vector<std::pair<float,size_t> >& costs,
|
|
const std::vector<Phrase> &sourcePhrases) const {
|
|
// convert into TargetPhraseCollection
|
|
CHECK(tCands.size() == sourcePhrases.size());
|
|
|
|
TargetPhraseCollectionWithSourcePhrase *rv=new TargetPhraseCollectionWithSourcePhrase;
|
|
|
|
|
|
// set limit to tableLimit or actual size, whatever is smaller
|
|
std::vector<std::pair<float,size_t> >::iterator nth =
|
|
costs.begin() + ((m_obj->m_tableLimit>0 && // 0 indicates no limit
|
|
m_obj->m_tableLimit < costs.size()) ?
|
|
m_obj->m_tableLimit : costs.size());
|
|
|
|
// find the nth phrase according to future cost
|
|
std::nth_element(costs.begin(),nth ,costs.end());
|
|
|
|
// add n top phrases to the return list
|
|
for(std::vector<std::pair<float,size_t> >::iterator
|
|
it = costs.begin(); it != nth; ++it) {
|
|
size_t ind = it->second;
|
|
TargetPhrase *targetPhrase = new TargetPhrase(tCands[ind]);
|
|
const Phrase &sourcePhrase = sourcePhrases[ind];
|
|
rv->Add(targetPhrase, sourcePhrase);
|
|
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
// POD for target phrase scores
|
|
struct TScores {
|
|
float total;
|
|
Scores transScore, inputScores;
|
|
Phrase const* src;
|
|
|
|
TScores() : total(0.0),src(0) {}
|
|
};
|
|
|
|
void CacheSource(ConfusionNet const& src) {
|
|
CHECK(m_dict);
|
|
const size_t srcSize=src.GetSize();
|
|
|
|
std::vector<size_t> exploredPaths(srcSize+1,0);
|
|
std::vector<double> exPathsD(srcSize+1,-1.0);
|
|
|
|
// collect some statistics
|
|
std::vector<size_t> cnDepths(srcSize,0);
|
|
for(size_t i=0; i<srcSize; ++i) cnDepths[i]=src[i].size();
|
|
|
|
for(size_t len=1; len<=srcSize; ++len)
|
|
for(size_t i=0; i<=srcSize-len; ++i) {
|
|
double pd=0.0;
|
|
for(size_t k=i; k<i+len; ++k) pd+=log(1.0*cnDepths[k]);
|
|
exPathsD[len]=(exPathsD[len]>=0.0 ? addLogScale(pd,exPathsD[len]) : pd);
|
|
}
|
|
|
|
// update global statistics
|
|
if(pathCN.size()<=srcSize) pathCN.resize(srcSize+1,-1.0);
|
|
for(size_t len=1; len<=srcSize; ++len)
|
|
pathCN[len]=pathCN[len]>=0.0 ? addLogScale(pathCN[len],exPathsD[len]) : exPathsD[len];
|
|
|
|
if(path1Best.size()<=srcSize) path1Best.resize(srcSize+1,0);
|
|
for(size_t len=1; len<=srcSize; ++len) path1Best[len]+=srcSize-len+1;
|
|
|
|
|
|
if (StaticData::Instance().GetVerboseLevel() >= 2 && exPathsD.size()) {
|
|
TRACE_ERR("path stats for current CN: \nCN (full): ");
|
|
std::transform(exPathsD.begin()+1
|
|
,exPathsD.end()
|
|
,std::ostream_iterator<double>(std::cerr," ")
|
|
,Exp);
|
|
TRACE_ERR("\n");
|
|
}
|
|
|
|
typedef StringTgtCand::Tokens sPhrase;
|
|
typedef std::map<StringTgtCand::Tokens,TScores> E2Costs;
|
|
|
|
std::map<Range,E2Costs> cov2cand;
|
|
std::vector<State> stack;
|
|
for(Position i=0 ; i < srcSize ; ++i)
|
|
stack.push_back(State(i, i, m_dict->GetRoot(), std::vector<float>(m_numInputScores,0.0)));
|
|
|
|
std::vector<float> weightTrans = StaticData::Instance().GetWeights(m_obj);
|
|
std::vector<float> weightInput = StaticData::Instance().GetWeights(m_inputFeature);
|
|
float weightWP = StaticData::Instance().GetWeightWordPenalty();
|
|
|
|
while(!stack.empty()) {
|
|
State curr(stack.back());
|
|
stack.pop_back();
|
|
|
|
CHECK(curr.end()<srcSize);
|
|
const ConfusionNet::Column &currCol=src[curr.end()];
|
|
// in a given column, loop over all possibilities
|
|
for(size_t colidx=0; colidx<currCol.size(); ++colidx) {
|
|
const Word& w=currCol[colidx].first; // w=the i^th possibility in column colidx
|
|
std::string s;
|
|
Factors2String(w,s);
|
|
bool isEpsilon=(s=="" || s==EPSILON);
|
|
|
|
//assert that we have the right number of link params in this CN option
|
|
CHECK(currCol[colidx].second.denseScores.size() >= m_numInputScores);
|
|
|
|
// do not start with epsilon (except at first position)
|
|
if(isEpsilon && curr.begin()==curr.end() && curr.begin()>0) continue;
|
|
|
|
// At a given node in the prefix tree, look to see if w defines an edge to
|
|
// another node (Extend). Stay at the same node if w==EPSILON
|
|
PPtr nextP = (isEpsilon ? curr.ptr : m_dict->Extend(curr.ptr,s));
|
|
|
|
if(nextP) { // w is a word that should be considered
|
|
Range newRange(curr.begin(),curr.end()+src.GetColumnIncrement(curr.end(),colidx));
|
|
|
|
//add together the link scores from the current state and the new arc
|
|
float inputScoreSum = 0;
|
|
std::vector<float> newInputScores(m_numInputScores,0.0);
|
|
if (m_numInputScores) {
|
|
std::transform(currCol[colidx].second.denseScores.begin(), currCol[colidx].second.denseScores.end(),
|
|
curr.GetScores().begin(),
|
|
newInputScores.begin(),
|
|
std::plus<float>());
|
|
|
|
|
|
//we need to sum up link weights (excluding realWordCount, which isn't in numLinkParams)
|
|
//if the sum is too low, then we won't expand this.
|
|
//TODO: dodgy! shouldn't we consider weights here? what about zero-weight params?
|
|
inputScoreSum = std::accumulate(newInputScores.begin(),newInputScores.begin()+m_numInputScores,0.0);
|
|
}
|
|
|
|
Phrase newSrc(curr.src);
|
|
if(!isEpsilon) newSrc.AddWord(w);
|
|
if(newRange.second<srcSize && inputScoreSum>LOWEST_SCORE) {
|
|
// if there is more room to grow, add a new state onto the queue
|
|
// to be explored that represents [begin, curEnd+)
|
|
stack.push_back(State(newRange,nextP,newInputScores));
|
|
stack.back().src=newSrc;
|
|
}
|
|
|
|
std::cerr << "newSrc=" << newSrc << std::endl;
|
|
|
|
std::vector<StringTgtCand> tcands;
|
|
// now, look up the target candidates (aprx. TargetPhraseCollection) for
|
|
// the current path through the CN
|
|
m_dict->GetTargetCandidates(nextP,tcands);
|
|
|
|
std::cerr << "tcands=" << tcands.size() << std::endl;
|
|
|
|
if(newRange.second>=exploredPaths.size()+newRange.first)
|
|
exploredPaths.resize(newRange.second-newRange.first+1,0);
|
|
++exploredPaths[newRange.second-newRange.first];
|
|
|
|
totalE+=tcands.size();
|
|
|
|
if(tcands.size()) {
|
|
E2Costs& e2costs=cov2cand[newRange];
|
|
Phrase const* srcPtr=uniqSrcPhr(newSrc);
|
|
for(size_t i=0; i<tcands.size(); ++i) {
|
|
//put input scores in first - already logged, just drop in directly
|
|
std::vector<float> transcores(m_obj->GetNumScoreComponents());
|
|
CHECK(transcores.size()==weightTrans.size());
|
|
|
|
//put in phrase table scores, logging as we insert
|
|
std::transform(tcands[i].scores.begin()
|
|
,tcands[i].scores.end()
|
|
,transcores.begin()
|
|
,TransformScore);
|
|
|
|
|
|
//tally up
|
|
float score=std::inner_product(transcores.begin(), transcores.end(), weightTrans.begin(), 0.0f);
|
|
|
|
// input feature
|
|
score +=std::inner_product(newInputScores.begin(), newInputScores.end(), weightInput.begin(), 0.0f);
|
|
|
|
//count word penalty
|
|
score-=tcands[i].tokens.size() * weightWP;
|
|
|
|
std::pair<E2Costs::iterator,bool> p=e2costs.insert(std::make_pair(tcands[i].tokens,TScores()));
|
|
|
|
if(p.second) ++distinctE;
|
|
|
|
TScores & scores=p.first->second;
|
|
if(p.second || scores.total<score) {
|
|
scores.total=score;
|
|
scores.transScore=transcores;
|
|
scores.inputScores=newInputScores;
|
|
scores.src=srcPtr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // end while(!stack.empty())
|
|
|
|
|
|
if (StaticData::Instance().GetVerboseLevel() >= 2 && exploredPaths.size()) {
|
|
TRACE_ERR("CN (explored): ");
|
|
std::copy(exploredPaths.begin()+1,exploredPaths.end(),
|
|
std::ostream_iterator<size_t>(std::cerr," "));
|
|
TRACE_ERR("\n");
|
|
}
|
|
|
|
if(pathExplored.size()<exploredPaths.size())
|
|
pathExplored.resize(exploredPaths.size(),0);
|
|
for(size_t len=1; len<=srcSize; ++len)
|
|
pathExplored[len]+=exploredPaths[len];
|
|
|
|
|
|
m_rangeCache.resize(src.GetSize(),vTPC(src.GetSize(),0));
|
|
|
|
for(std::map<Range,E2Costs>::const_iterator i=cov2cand.begin(); i!=cov2cand.end(); ++i) {
|
|
CHECK(i->first.first<m_rangeCache.size());
|
|
CHECK(i->first.second>0);
|
|
CHECK(static_cast<size_t>(i->first.second-1)<m_rangeCache[i->first.first].size());
|
|
CHECK(m_rangeCache[i->first.first][i->first.second-1]==0);
|
|
|
|
std::vector<TargetPhrase> tCands;
|
|
tCands.reserve(i->second.size());
|
|
|
|
std::vector<std::pair<float,size_t> > costs;
|
|
costs.reserve(i->second.size());
|
|
|
|
std::vector<Phrase> sourcePhrases;
|
|
sourcePhrases.reserve(i->second.size());
|
|
|
|
for(E2Costs::const_iterator j=i->second.begin(); j!=i->second.end(); ++j) {
|
|
TScores const & scores=j->second;
|
|
TargetPhrase targetPhrase;
|
|
CreateTargetPhrase(targetPhrase
|
|
, j ->first
|
|
, scores.transScore
|
|
, scores.inputScores
|
|
, NULL
|
|
, scores.src);
|
|
costs.push_back(std::make_pair(-targetPhrase.GetFutureScore(),tCands.size()));
|
|
tCands.push_back(targetPhrase);
|
|
|
|
sourcePhrases.push_back(*scores.src);
|
|
|
|
//std::cerr << i->first.first << "-" << i->first.second << ": " << targetPhrase << std::endl;
|
|
}
|
|
|
|
TargetPhraseCollectionWithSourcePhrase *rv=PruneTargetCandidates(tCands, costs, sourcePhrases);
|
|
|
|
if(rv->IsEmpty())
|
|
delete rv;
|
|
else {
|
|
m_rangeCache[i->first.first][i->first.second-1]=rv;
|
|
m_tgtColls.push_back(rv);
|
|
}
|
|
}
|
|
// free memory
|
|
m_dict->FreeMemory();
|
|
}
|
|
|
|
|
|
size_t GetNumInputScores() const {
|
|
return m_numInputScores;
|
|
}
|
|
};
|
|
|
|
}
|
|
#endif
|