mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-25 21:03:22 +03:00
d39cbca0b9
this adds support for metrics that rely on alignment / trees
110 lines
2.5 KiB
C++
110 lines
2.5 KiB
C++
/*
|
|
* Data.h
|
|
* mert - Minimum Error Rate Training
|
|
*
|
|
* Created by Nicola Bertoldi on 13/05/08.
|
|
*
|
|
*/
|
|
|
|
#ifndef MERT_DATA_H_
|
|
#define MERT_DATA_H_
|
|
|
|
#include <vector>
|
|
#include <boost/shared_ptr.hpp>
|
|
|
|
#include "Util.h"
|
|
#include "FeatureData.h"
|
|
#include "ScoreData.h"
|
|
|
|
namespace MosesTuning
|
|
{
|
|
|
|
class Scorer;
|
|
|
|
typedef boost::shared_ptr<ScoreData> ScoreDataHandle;
|
|
typedef boost::shared_ptr<FeatureData> FeatureDataHandle;
|
|
|
|
// NOTE: there is no copy constructor implemented, so only the
|
|
// compiler synthesised shallow copy is available.
|
|
class Data
|
|
{
|
|
private:
|
|
Scorer* m_scorer;
|
|
std::string m_score_type;
|
|
std::size_t m_num_scores;
|
|
ScoreDataHandle m_score_data;
|
|
FeatureDataHandle m_feature_data;
|
|
SparseVector m_sparse_weights;
|
|
|
|
public:
|
|
explicit Data(Scorer* scorer, const std::string& sparseweightsfile="");
|
|
|
|
void clear() {
|
|
m_score_data->clear();
|
|
m_feature_data->clear();
|
|
}
|
|
|
|
ScoreDataHandle getScoreData() {
|
|
return m_score_data;
|
|
}
|
|
|
|
FeatureDataHandle getFeatureData() {
|
|
return m_feature_data;
|
|
}
|
|
|
|
Scorer* getScorer() {
|
|
return m_scorer;
|
|
}
|
|
|
|
std::size_t NumberOfFeatures() const {
|
|
return m_feature_data->NumberOfFeatures();
|
|
}
|
|
|
|
std::string Features() const {
|
|
return m_feature_data->Features();
|
|
}
|
|
void Features(const std::string &f) {
|
|
m_feature_data->Features(f);
|
|
}
|
|
|
|
void loadNBest(const std::string &file, bool oneBest=false);
|
|
|
|
void load(const std::string &featfile, const std::string &scorefile);
|
|
|
|
void save(const std::string &featfile, const std::string &scorefile, bool bin=false);
|
|
|
|
//ADDED BY TS
|
|
void removeDuplicates();
|
|
//END_ADDED
|
|
|
|
inline bool existsFeatureNames() const {
|
|
return m_feature_data->existsFeatureNames();
|
|
}
|
|
|
|
inline std::string getFeatureName(std::size_t idx) const {
|
|
return m_feature_data->getFeatureName(idx);
|
|
}
|
|
|
|
inline std::size_t getFeatureIndex(const std::string& name) const {
|
|
return m_feature_data->getFeatureIndex(name);
|
|
}
|
|
|
|
/**
|
|
* Create shard_count shards. If shard_size == 0, then the shards are non-overlapping
|
|
* and exhaust the data. If 0 < shard_size <= 1, then shards are chosen by sampling
|
|
* the data (with replacement) and shard_size is interpreted as the proportion
|
|
* of the total size.
|
|
*/
|
|
void createShards(std::size_t shard_count, float shard_size, const std::string& scorerconfig,
|
|
std::vector<Data>& shards);
|
|
|
|
// Helper functions for loadnbest();
|
|
void InitFeatureMap(const std::string& str);
|
|
void AddFeatures(const std::string& str,
|
|
int sentence_index);
|
|
};
|
|
|
|
}
|
|
|
|
#endif // MERT_DATA_H_
|