mosesdecoder/mert/FeatureStats.cpp
2015-01-14 11:07:42 +00:00

355 lines
7.6 KiB
C++

/*
* FeatureStats.cpp
* mert - Minimum Error Rate Training
*
* Created by Nicola Bertoldi on 13/05/08.
*
*/
#include "FeatureStats.h"
#include <fstream>
#include <cmath>
#include <stdexcept>
#include <boost/functional/hash.hpp>
#include "util/murmur_hash.hh"
#include "Util.h"
using namespace std;
namespace
{
const int kAvailableSize = 8;
} // namespace
namespace MosesTuning
{
SparseVector::name2id_t SparseVector::m_name_to_id;
SparseVector::id2name_t SparseVector::m_id_to_name;
FeatureStatsType SparseVector::get(const string& name) const
{
name2id_t::const_iterator name2id_iter = m_name_to_id.find(name);
if (name2id_iter == m_name_to_id.end()) return 0;
size_t id = name2id_iter->second;
return get(id);
}
FeatureStatsType SparseVector::get(size_t id) const
{
fvector_t::const_iterator fvector_iter = m_fvector.find(id);
if (fvector_iter == m_fvector.end()) return 0;
return fvector_iter->second;
}
void SparseVector::set(const string& name, FeatureStatsType value)
{
name2id_t::const_iterator name2id_iter = m_name_to_id.find(name);
size_t id = 0;
if (name2id_iter == m_name_to_id.end()) {
id = m_id_to_name.size();
m_id_to_name.push_back(name);
m_name_to_id[name] = id;
} else {
id = name2id_iter->second;
}
m_fvector[id] = value;
}
void SparseVector::set(size_t id, FeatureStatsType value)
{
assert(m_id_to_name.size() > id);
m_fvector[id] = value;
}
void SparseVector::write(ostream& out, const string& sep) const
{
for (fvector_t::const_iterator i = m_fvector.begin(); i != m_fvector.end(); ++i) {
if (abs(i->second) < 0.00001) continue;
string name = m_id_to_name[i->first];
out << name << sep << i->second << " ";
}
}
void SparseVector::clear()
{
m_fvector.clear();
}
void SparseVector::load(const string& file)
{
ifstream in(file.c_str());
if (!in) {
throw runtime_error("Failed to open sparse weights file: " + file);
}
string line;
while(getline(in,line)) {
if (line[0] == '#') continue;
istringstream linestream(line);
string name;
float value;
linestream >> name;
linestream >> value;
set(name,value);
}
}
SparseVector& SparseVector::operator+=(const SparseVector& rhs)
{
for (fvector_t::const_iterator i = rhs.m_fvector.begin();
i != rhs.m_fvector.end(); ++i) {
m_fvector[i->first] = get(i->first) + (i->second);
}
return *this;
}
SparseVector& SparseVector::operator-=(const SparseVector& rhs)
{
for (fvector_t::const_iterator i = rhs.m_fvector.begin();
i != rhs.m_fvector.end(); ++i) {
m_fvector[i->first] = get(i->first) - (i->second);
}
return *this;
}
FeatureStatsType SparseVector::inner_product(const SparseVector& rhs) const
{
FeatureStatsType product = 0.0;
for (fvector_t::const_iterator i = m_fvector.begin();
i != m_fvector.end(); ++i) {
product += ((i->second) * (rhs.get(i->first)));
}
return product;
}
SparseVector operator-(const SparseVector& lhs, const SparseVector& rhs)
{
SparseVector res(lhs);
res -= rhs;
return res;
}
FeatureStatsType inner_product(const SparseVector& lhs, const SparseVector& rhs)
{
if (lhs.size() >= rhs.size()) {
return rhs.inner_product(lhs);
} else {
return lhs.inner_product(rhs);
}
}
std::vector<std::size_t> SparseVector::feats() const
{
std::vector<std::size_t> toRet;
for(fvector_t::const_iterator iter = m_fvector.begin();
iter!=m_fvector.end();
iter++) {
toRet.push_back(iter->first);
}
return toRet;
}
std::size_t SparseVector::encode(const std::string& name)
{
name2id_t::const_iterator name2id_iter = m_name_to_id.find(name);
size_t id = 0;
if (name2id_iter == m_name_to_id.end()) {
id = m_id_to_name.size();
m_id_to_name.push_back(name);
m_name_to_id[name] = id;
} else {
id = name2id_iter->second;
}
return id;
}
std::string SparseVector::decode(std::size_t id)
{
return m_id_to_name[id];
}
bool operator==(SparseVector const& item1, SparseVector const& item2)
{
return item1.m_fvector==item2.m_fvector;
}
std::size_t hash_value(SparseVector const& item)
{
size_t seed = 0;
for (SparseVector::fvector_t::const_iterator i = item.m_fvector.begin(); i != item.m_fvector.end(); ++i) {
seed = util::MurmurHashNative(&(i->first), sizeof(i->first), seed);
seed = util::MurmurHashNative(&(i->second), sizeof(i->second), seed);
}
return seed;
}
FeatureStats::FeatureStats()
: m_available_size(kAvailableSize), m_entries(0),
m_array(new FeatureStatsType[m_available_size]) {}
FeatureStats::FeatureStats(const size_t size)
: m_available_size(size), m_entries(size),
m_array(new FeatureStatsType[m_available_size])
{
memset(m_array, 0, GetArraySizeWithBytes());
}
FeatureStats::~FeatureStats()
{
delete [] m_array;
}
void FeatureStats::Copy(const FeatureStats &stats)
{
m_available_size = stats.available();
m_entries = stats.size();
m_array = new FeatureStatsType[m_available_size];
memcpy(m_array, stats.getArray(), GetArraySizeWithBytes());
m_map = stats.getSparse();
}
FeatureStats::FeatureStats(const FeatureStats &stats)
{
Copy(stats);
}
FeatureStats& FeatureStats::operator=(const FeatureStats &stats)
{
delete [] m_array;
Copy(stats);
return *this;
}
void FeatureStats::expand()
{
m_available_size *= 2;
featstats_t t_ = new FeatureStatsType[m_available_size];
memcpy(t_, m_array, GetArraySizeWithBytes());
delete [] m_array;
m_array = t_;
}
void FeatureStats::add(FeatureStatsType v)
{
if (isfull()) expand();
m_array[m_entries++]=v;
}
void FeatureStats::addSparse(const string& name, FeatureStatsType v)
{
m_map.set(name,v);
}
void FeatureStats::set(string &theString, const SparseVector& sparseWeights )
{
string substring, stringBuf;
reset();
while (!theString.empty()) {
getNextPound(theString, substring);
// regular feature
if (substring.find("=") == string::npos) {
add(ConvertStringToFeatureStatsType(substring));
}
// sparse feature
else {
size_t separator = substring.find_last_of("=");
addSparse(substring.substr(0,separator), atof(substring.substr(separator+1).c_str()) );
}
}
if (sparseWeights.size()) {
//Merge the sparse features
FeatureStatsType merged = inner_product(sparseWeights, m_map);
add(merged);
/*
cerr << "Merged ";
sparseWeights.write(cerr,"=");
cerr << " and ";
map_.write(cerr,"=");
cerr << " to give " << merged << endl;
*/
m_map.clear();
}
/*
cerr << "FS: ";
for (size_t i = 0; i < entries_; ++i) {
cerr << array_[i] << " ";
}
cerr << endl;*/
}
void FeatureStats::loadbin(istream* is)
{
is->read(reinterpret_cast<char*>(m_array),
static_cast<streamsize>(GetArraySizeWithBytes()));
}
void FeatureStats::loadtxt(istream* is, const SparseVector& sparseWeights)
{
string line;
getline(*is, line);
set(line, sparseWeights);
}
void FeatureStats::savetxt(const string &file)
{
ofstream ofs(file.c_str(), ios::out);
ostream* os = &ofs;
savetxt(os);
}
void FeatureStats::savetxt(ostream* os)
{
*os << *this;
}
void FeatureStats::savetxt()
{
savetxt(&cout);
}
void FeatureStats::savebin(ostream* os)
{
os->write(reinterpret_cast<char*>(m_array),
static_cast<streamsize>(GetArraySizeWithBytes()));
}
ostream& operator<<(ostream& o, const FeatureStats& e)
{
// print regular features
for (size_t i=0; i< e.size(); i++) {
o << e.get(i) << " ";
}
// sparse features
e.getSparse().write(o,"");
return o;
}
bool operator==(const FeatureStats& f1, const FeatureStats& f2)
{
size_t size = f1.size();
if (size != f2.size())
return false;
for (size_t k=0; k < size; k++) {
if (f1.get(k) != f2.get(k))
return false;
}
return true;
}
}