mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-06 19:49:41 +03:00
361 lines
12 KiB
C++
361 lines
12 KiB
C++
// vim:tabstop=2
|
|
/***********************************************************************
|
|
Moses - factored phrase-based language decoder
|
|
Copyright (C) 2010 Hieu Hoang
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
***********************************************************************/
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include "ChartHypothesis.h"
|
|
#include "RuleCubeItem.h"
|
|
#include "ChartCell.h"
|
|
#include "ChartManager.h"
|
|
#include "TargetPhrase.h"
|
|
#include "Phrase.h"
|
|
#include "StaticData.h"
|
|
#include "ChartTranslationOptions.h"
|
|
#include "moses/FF/FFState.h"
|
|
#include "moses/FF/StatefulFeatureFunction.h"
|
|
#include "moses/FF/StatelessFeatureFunction.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace Moses
|
|
{
|
|
|
|
#ifdef USE_HYPO_POOL
|
|
ObjectPool<ChartHypothesis> ChartHypothesis::s_objectPool("ChartHypothesis", 300000);
|
|
#endif
|
|
|
|
/** Create a hypothesis from a rule
|
|
* \param transOpt wrapper around the rule
|
|
* \param item @todo dunno
|
|
* \param manager reference back to manager
|
|
*/
|
|
ChartHypothesis::ChartHypothesis(const ChartTranslationOptions &transOpt,
|
|
const RuleCubeItem &item,
|
|
ChartManager &manager)
|
|
:m_transOpt(item.GetTranslationDimension().GetTranslationOption())
|
|
,m_currSourceWordsRange(transOpt.GetSourceWordsRange())
|
|
,m_ffStates(StatefulFeatureFunction::GetStatefulFeatureFunctions().size())
|
|
,m_arcList(NULL)
|
|
,m_winningHypo(NULL)
|
|
,m_manager(manager)
|
|
,m_id(manager.GetNextHypoId())
|
|
{
|
|
// underlying hypotheses for sub-spans
|
|
const std::vector<HypothesisDimension> &childEntries = item.GetHypothesisDimensions();
|
|
m_prevHypos.reserve(childEntries.size());
|
|
std::vector<HypothesisDimension>::const_iterator iter;
|
|
for (iter = childEntries.begin(); iter != childEntries.end(); ++iter) {
|
|
m_prevHypos.push_back(iter->GetHypothesis());
|
|
}
|
|
}
|
|
|
|
// Intended to be used by ChartKBestExtractor only. This creates a mock
|
|
// ChartHypothesis for use by the extractor's top-level target vertex.
|
|
ChartHypothesis::ChartHypothesis(const ChartHypothesis &pred,
|
|
const ChartKBestExtractor & /*unused*/)
|
|
:m_currSourceWordsRange(pred.m_currSourceWordsRange)
|
|
,m_totalScore(pred.m_totalScore)
|
|
,m_arcList(NULL)
|
|
,m_winningHypo(NULL)
|
|
,m_manager(pred.m_manager)
|
|
,m_id(pred.m_manager.GetNextHypoId())
|
|
{
|
|
// One predecessor, which is an existing top-level ChartHypothesis.
|
|
m_prevHypos.push_back(&pred);
|
|
}
|
|
|
|
ChartHypothesis::~ChartHypothesis()
|
|
{
|
|
// delete feature function states
|
|
for (unsigned i = 0; i < m_ffStates.size(); ++i) {
|
|
delete m_ffStates[i];
|
|
}
|
|
|
|
// delete hypotheses that are not in the chart (recombined away)
|
|
if (m_arcList) {
|
|
ChartArcList::iterator iter;
|
|
for (iter = m_arcList->begin() ; iter != m_arcList->end() ; ++iter) {
|
|
ChartHypothesis *hypo = *iter;
|
|
Delete(hypo);
|
|
}
|
|
m_arcList->clear();
|
|
|
|
delete m_arcList;
|
|
}
|
|
}
|
|
|
|
/** Create full output phrase that is contained in the hypothesis (and its children)
|
|
* \param outPhrase full output phrase as return argument
|
|
*/
|
|
void ChartHypothesis::GetOutputPhrase(Phrase &outPhrase) const
|
|
{
|
|
FactorType placeholderFactor = StaticData::Instance().GetPlaceholderFactor();
|
|
|
|
for (size_t pos = 0; pos < GetCurrTargetPhrase().GetSize(); ++pos) {
|
|
const Word &word = GetCurrTargetPhrase().GetWord(pos);
|
|
if (word.IsNonTerminal()) {
|
|
// non-term. fill out with prev hypo
|
|
size_t nonTermInd = GetCurrTargetPhrase().GetAlignNonTerm().GetNonTermIndexMap()[pos];
|
|
const ChartHypothesis *prevHypo = m_prevHypos[nonTermInd];
|
|
prevHypo->GetOutputPhrase(outPhrase);
|
|
} else {
|
|
outPhrase.AddWord(word);
|
|
|
|
if (placeholderFactor != NOT_FOUND) {
|
|
std::set<size_t> sourcePosSet = GetCurrTargetPhrase().GetAlignTerm().GetAlignmentsForTarget(pos);
|
|
if (sourcePosSet.size() == 1) {
|
|
const std::vector<const Word*> *ruleSourceFromInputPath = GetTranslationOption().GetSourceRuleFromInputPath();
|
|
UTIL_THROW_IF2(ruleSourceFromInputPath == NULL,
|
|
"No source rule");
|
|
|
|
size_t sourcePos = *sourcePosSet.begin();
|
|
const Word *sourceWord = ruleSourceFromInputPath->at(sourcePos);
|
|
UTIL_THROW_IF2(sourceWord == NULL,
|
|
"No source word");
|
|
const Factor *factor = sourceWord->GetFactor(placeholderFactor);
|
|
if (factor) {
|
|
outPhrase.Back()[0] = factor;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Return full output phrase */
|
|
Phrase ChartHypothesis::GetOutputPhrase() const
|
|
{
|
|
Phrase outPhrase(ARRAY_SIZE_INCR);
|
|
GetOutputPhrase(outPhrase);
|
|
return outPhrase;
|
|
}
|
|
|
|
/** TODO: this method isn't used anywhere. Remove? */
|
|
void ChartHypothesis::GetOutputPhrase(size_t leftRightMost, size_t numWords, Phrase &outPhrase) const
|
|
{
|
|
const TargetPhrase &tp = GetCurrTargetPhrase();
|
|
|
|
size_t targetSize = tp.GetSize();
|
|
for (size_t i = 0; i < targetSize; ++i) {
|
|
size_t pos;
|
|
if (leftRightMost == 1) {
|
|
pos = i;
|
|
} else if (leftRightMost == 2) {
|
|
pos = targetSize - i - 1;
|
|
} else {
|
|
abort();
|
|
}
|
|
|
|
const Word &word = tp.GetWord(pos);
|
|
|
|
if (word.IsNonTerminal()) {
|
|
// non-term. fill out with prev hypo
|
|
size_t nonTermInd = tp.GetAlignNonTerm().GetNonTermIndexMap()[pos];
|
|
const ChartHypothesis *prevHypo = m_prevHypos[nonTermInd];
|
|
prevHypo->GetOutputPhrase(outPhrase);
|
|
} else {
|
|
outPhrase.AddWord(word);
|
|
}
|
|
|
|
if (outPhrase.GetSize() >= numWords) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** check, if two hypothesis can be recombined.
|
|
this is actually a sorting function that allows us to
|
|
keep an ordered list of hypotheses. This makes recombination
|
|
much quicker. Returns one of 3 possible values:
|
|
-1 = this < compare
|
|
+1 = this > compare
|
|
0 = this ==compare
|
|
\param compare the other hypo to compare to
|
|
*/
|
|
int ChartHypothesis::RecombineCompare(const ChartHypothesis &compare) const
|
|
{
|
|
int comp = 0;
|
|
|
|
for (unsigned i = 0; i < m_ffStates.size(); ++i) {
|
|
if (m_ffStates[i] == NULL || compare.m_ffStates[i] == NULL)
|
|
comp = m_ffStates[i] - compare.m_ffStates[i];
|
|
else
|
|
comp = m_ffStates[i]->Compare(*compare.m_ffStates[i]);
|
|
|
|
if (comp != 0)
|
|
return comp;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** calculate total score */
|
|
void ChartHypothesis::EvaluateWhenApplied()
|
|
{
|
|
const StaticData &staticData = StaticData::Instance();
|
|
|
|
// compute values of stateless feature functions that were not
|
|
// cached in the translation option-- there is no principled distinction
|
|
const std::vector<const StatelessFeatureFunction*>& sfs =
|
|
StatelessFeatureFunction::GetStatelessFeatureFunctions();
|
|
for (unsigned i = 0; i < sfs.size(); ++i) {
|
|
if (! staticData.IsFeatureFunctionIgnored( *sfs[i] )) {
|
|
sfs[i]->EvaluateWhenApplied(*this,&m_currScoreBreakdown);
|
|
}
|
|
}
|
|
|
|
const std::vector<const StatefulFeatureFunction*>& ffs =
|
|
StatefulFeatureFunction::GetStatefulFeatureFunctions();
|
|
for (unsigned i = 0; i < ffs.size(); ++i) {
|
|
if (! staticData.IsFeatureFunctionIgnored( *ffs[i] )) {
|
|
m_ffStates[i] = ffs[i]->EvaluateWhenApplied(*this,i,&m_currScoreBreakdown);
|
|
}
|
|
}
|
|
|
|
// total score from current translation rule
|
|
m_totalScore = GetTranslationOption().GetScores().GetWeightedScore();
|
|
m_totalScore += m_currScoreBreakdown.GetWeightedScore();
|
|
|
|
// total scores from prev hypos
|
|
for (std::vector<const ChartHypothesis*>::const_iterator iter = m_prevHypos.begin(); iter != m_prevHypos.end(); ++iter) {
|
|
const ChartHypothesis &prevHypo = **iter;
|
|
m_totalScore += prevHypo.GetTotalScore();
|
|
}
|
|
}
|
|
|
|
void ChartHypothesis::AddArc(ChartHypothesis *loserHypo)
|
|
{
|
|
if (!m_arcList) {
|
|
if (loserHypo->m_arcList) {
|
|
// we don't have an arcList, but loser does
|
|
this->m_arcList = loserHypo->m_arcList; // take ownership, we'll delete
|
|
loserHypo->m_arcList = 0; // prevent a double deletion
|
|
} else {
|
|
this->m_arcList = new ChartArcList();
|
|
}
|
|
} else {
|
|
if (loserHypo->m_arcList) {
|
|
// both have an arc list: merge. delete loser
|
|
size_t my_size = m_arcList->size();
|
|
size_t add_size = loserHypo->m_arcList->size();
|
|
this->m_arcList->resize(my_size + add_size, 0);
|
|
std::memcpy(&(*m_arcList)[0] + my_size, &(*loserHypo->m_arcList)[0], add_size * sizeof(ChartHypothesis *));
|
|
delete loserHypo->m_arcList;
|
|
loserHypo->m_arcList = 0;
|
|
} else {
|
|
// loserHypo doesn't have any arcs
|
|
// DO NOTHING
|
|
}
|
|
}
|
|
m_arcList->push_back(loserHypo);
|
|
}
|
|
|
|
// sorting helper
|
|
struct CompareChartHypothesisTotalScore {
|
|
bool operator()(const ChartHypothesis* hypo1, const ChartHypothesis* hypo2) const {
|
|
return hypo1->GetTotalScore() > hypo2->GetTotalScore();
|
|
}
|
|
};
|
|
|
|
void ChartHypothesis::CleanupArcList()
|
|
{
|
|
// point this hypo's main hypo to itself
|
|
m_winningHypo = this;
|
|
|
|
if (!m_arcList) return;
|
|
|
|
/* keep only number of arcs we need to create all n-best paths.
|
|
* However, may not be enough if only unique candidates are needed,
|
|
* so we'll keep all of arc list if nedd distinct n-best list
|
|
*/
|
|
const StaticData &staticData = StaticData::Instance();
|
|
size_t nBestSize = staticData.GetNBestSize();
|
|
bool distinctNBest = staticData.GetDistinctNBest() || staticData.UseMBR() || staticData.GetOutputSearchGraph() || staticData.GetOutputSearchGraphHypergraph();
|
|
|
|
if (!distinctNBest && m_arcList->size() > nBestSize) {
|
|
// prune arc list only if there too many arcs
|
|
NTH_ELEMENT4(m_arcList->begin()
|
|
, m_arcList->begin() + nBestSize - 1
|
|
, m_arcList->end()
|
|
, CompareChartHypothesisTotalScore());
|
|
|
|
// delete bad ones
|
|
ChartArcList::iterator iter;
|
|
for (iter = m_arcList->begin() + nBestSize ; iter != m_arcList->end() ; ++iter) {
|
|
ChartHypothesis *arc = *iter;
|
|
ChartHypothesis::Delete(arc);
|
|
}
|
|
m_arcList->erase(m_arcList->begin() + nBestSize
|
|
, m_arcList->end());
|
|
}
|
|
|
|
// set all arc's main hypo variable to this hypo
|
|
ChartArcList::iterator iter = m_arcList->begin();
|
|
for (; iter != m_arcList->end() ; ++iter) {
|
|
ChartHypothesis *arc = *iter;
|
|
arc->SetWinningHypo(this);
|
|
}
|
|
|
|
//cerr << m_arcList->size() << " ";
|
|
}
|
|
|
|
void ChartHypothesis::SetWinningHypo(const ChartHypothesis *hypo)
|
|
{
|
|
m_winningHypo = hypo;
|
|
}
|
|
|
|
TO_STRING_BODY(ChartHypothesis)
|
|
|
|
// friend
|
|
std::ostream& operator<<(std::ostream& out, const ChartHypothesis& hypo)
|
|
{
|
|
|
|
out << hypo.GetId();
|
|
|
|
// recombination
|
|
if (hypo.GetWinningHypothesis() != NULL &&
|
|
hypo.GetWinningHypothesis() != &hypo) {
|
|
out << "->" << hypo.GetWinningHypothesis()->GetId();
|
|
}
|
|
|
|
if (StaticData::Instance().GetIncludeLHSInSearchGraph()) {
|
|
out << " " << hypo.GetTargetLHS() << "=>";
|
|
}
|
|
out << " " << hypo.GetCurrTargetPhrase()
|
|
//<< " " << outPhrase
|
|
<< " " << hypo.GetCurrSourceRange();
|
|
|
|
HypoList::const_iterator iter;
|
|
for (iter = hypo.GetPrevHypos().begin(); iter != hypo.GetPrevHypos().end(); ++iter) {
|
|
const ChartHypothesis &prevHypo = **iter;
|
|
out << " " << prevHypo.GetId();
|
|
}
|
|
|
|
out << " [total=" << hypo.GetTotalScore() << "]";
|
|
out << " " << hypo.GetScoreBreakdown();
|
|
|
|
//out << endl;
|
|
|
|
return out;
|
|
}
|
|
|
|
}
|