mosesdecoder/mira/MiraOptimiser.cpp

750 lines
30 KiB
C++

#include "Optimiser.h"
#include "Hildreth.h"
#include "StaticData.h"
using namespace Moses;
using namespace std;
namespace Mira {
size_t MiraOptimiser::updateWeights(
ScoreComponentCollection& weightUpdate,
const vector<vector<ScoreComponentCollection> >& featureValues,
const vector<vector<float> >& losses,
const vector<vector<float> >& bleuScores,
const vector<vector<float> >& modelScores,
const vector<ScoreComponentCollection>& oracleFeatureValues,
const vector<float> oracleBleuScores,
const vector<float> oracleModelScores,
float learning_rate,
size_t rank,
size_t epoch) {
// vector of feature values differences for all created constraints
vector<ScoreComponentCollection> featureValueDiffs;
vector<float> lossMinusModelScoreDiffs;
vector<float> all_losses;
// most violated constraint in batch
ScoreComponentCollection max_batch_featureValueDiff;
// Make constraints for new hypothesis translations
float epsilon = 0.0001;
int violatedConstraintsBefore = 0;
float oldDistanceFromOptimum = 0;
// iterate over input sentences (1 (online) or more (batch))
for (size_t i = 0; i < featureValues.size(); ++i) {
//size_t sentenceId = sentenceIds[i];
// iterate over hypothesis translations for one input sentence
for (size_t j = 0; j < featureValues[i].size(); ++j) {
ScoreComponentCollection featureValueDiff = oracleFeatureValues[i];
featureValueDiff.MinusEquals(featureValues[i][j]);
// cerr << "Rank " << rank << ", epoch " << epoch << ", feature value diff: " << featureValueDiff << endl;
if (featureValueDiff.GetL1Norm() == 0) {
cerr << "Rank " << rank << ", epoch " << epoch << ", features equal --> skip" << endl;
continue;
}
float loss = losses[i][j];
// check if constraint is violated
bool violated = false;
// float modelScoreDiff = featureValueDiff.InnerProduct(currWeights);
float modelScoreDiff = oracleModelScores[i] - modelScores[i][j];
float diff = 0;
if (loss > modelScoreDiff)
diff = loss - modelScoreDiff;
cerr << "Rank " << rank << ", epoch " << epoch << ", constraint: " << modelScoreDiff << " >= " << loss << " (current violation: " << diff << ")" << endl;
if (diff > epsilon)
violated = true;
if (m_normaliseMargin) {
modelScoreDiff = (2*m_sigmoidParam/(1 + exp(-modelScoreDiff))) - m_sigmoidParam;
loss = (2*m_sigmoidParam/(1 + exp(-loss))) - m_sigmoidParam;
diff = 0;
if (loss > modelScoreDiff) {
diff = loss - modelScoreDiff;
}
cerr << "Rank " << rank << ", epoch " << epoch << ", normalised constraint: " << modelScoreDiff << " >= " << loss << " (current violation: " << diff << ")" << endl;
}
if (m_scale_margin) {
diff *= oracleBleuScores[i];
cerr << "Rank " << rank << ", epoch " << epoch << ", scaling margin with oracle bleu score " << oracleBleuScores[i] << endl;
}
featureValueDiffs.push_back(featureValueDiff);
lossMinusModelScoreDiffs.push_back(diff);
all_losses.push_back(loss);
if (violated) {
++violatedConstraintsBefore;
oldDistanceFromOptimum += diff;
}
}
}
// run optimisation: compute alphas for all given constraints
vector<float> alphas;
ScoreComponentCollection summedUpdate;
if (violatedConstraintsBefore > 0) {
cerr << "Rank " << rank << ", epoch " << epoch << ", number of constraints passed to optimizer: " <<
featureValueDiffs.size() << " (of which violated: " << violatedConstraintsBefore << ")" << endl;
if (m_slack != 0) {
alphas = Hildreth::optimise(featureValueDiffs, lossMinusModelScoreDiffs, m_slack);
} else {
alphas = Hildreth::optimise(featureValueDiffs, lossMinusModelScoreDiffs);
}
// Update the weight vector according to the alphas and the feature value differences
// * w' = w' + SUM alpha_i * (h_i(oracle) - h_i(hypothesis))
for (size_t k = 0; k < featureValueDiffs.size(); ++k) {
float alpha = alphas[k];
cerr << "Rank " << rank << ", epoch " << epoch << ", alpha: " << alpha << endl;
ScoreComponentCollection update(featureValueDiffs[k]);
update.MultiplyEquals(alpha);
// sum updates
summedUpdate.PlusEquals(update);
}
}
else {
cerr << "Rank " << rank << ", epoch " << epoch << ", no constraint violated for this batch" << endl;
// return 0;
return 1;
}
// apply learning rate
if (learning_rate != 1) {
cerr << "Rank " << rank << ", epoch " << epoch << ", apply learning rate " << learning_rate << " to update." << endl;
summedUpdate.MultiplyEquals(learning_rate);
}
// scale update by BLEU of oracle (for batch size 1 only)
if (oracleBleuScores.size() == 1) {
if (m_scale_update) {
cerr << "Rank " << rank << ", epoch " << epoch << ", scaling summed update with oracle bleu score " << oracleBleuScores[0] << endl;
summedUpdate.MultiplyEquals(oracleBleuScores[0]);
}
}
// cerr << "Rank " << rank << ", epoch " << epoch << ", update: " << summedUpdate << endl;
weightUpdate.PlusEquals(summedUpdate);
// Sanity check: are there still violated constraints after optimisation?
/* int violatedConstraintsAfter = 0;
float newDistanceFromOptimum = 0;
for (size_t i = 0; i < featureValueDiffs.size(); ++i) {
float modelScoreDiff = featureValueDiffs[i].InnerProduct(currWeights);
float loss = all_losses[i];
float diff = loss - modelScoreDiff;
if (diff > epsilon) {
++violatedConstraintsAfter;
newDistanceFromOptimum += diff;
}
}
VERBOSE(1, "Rank " << rank << ", epoch " << epoch << ", violated constraint before: " << violatedConstraintsBefore << ", after: " << violatedConstraintsAfter << ", change: " << violatedConstraintsBefore - violatedConstraintsAfter << endl);
VERBOSE(1, "Rank " << rank << ", epoch " << epoch << ", error before: " << oldDistanceFromOptimum << ", after: " << newDistanceFromOptimum << ", change: " << oldDistanceFromOptimum - newDistanceFromOptimum << endl);*/
// return violatedConstraintsAfter;
return 0;
}
size_t MiraOptimiser::updateWeightsHopeFear(
Moses::ScoreComponentCollection& weightUpdate,
const std::vector< std::vector<Moses::ScoreComponentCollection> >& featureValuesHope,
const std::vector< std::vector<Moses::ScoreComponentCollection> >& featureValuesFear,
const std::vector<std::vector<float> >& bleuScoresHope,
const std::vector<std::vector<float> >& bleuScoresFear,
const std::vector<std::vector<float> >& modelScoresHope,
const std::vector<std::vector<float> >& modelScoresFear,
float learning_rate,
size_t rank,
size_t epoch,
int updatePosition) {
// vector of feature values differences for all created constraints
vector<ScoreComponentCollection> featureValueDiffs;
vector<float> lossMinusModelScoreDiffs;
vector<float> modelScoreDiffs;
vector<float> all_losses;
// most violated constraint in batch
ScoreComponentCollection max_batch_featureValueDiff;
// Make constraints for new hypothesis translations
float epsilon = 0.0001;
int violatedConstraintsBefore = 0;
float oldDistanceFromOptimum = 0;
// iterate over input sentences (1 (online) or more (batch))
for (size_t i = 0; i < featureValuesHope.size(); ++i) {
if (updatePosition != -1) {
if (i < updatePosition)
continue;
else if (i > updatePosition)
break;
}
// Pick all pairs[j,j] of hope and fear translations for one input sentence
for (size_t j = 0; j < featureValuesHope[i].size(); ++j) {
ScoreComponentCollection featureValueDiff = featureValuesHope[i][j];
featureValueDiff.MinusEquals(featureValuesFear[i][j]);
//cerr << "Rank " << rank << ", epoch " << epoch << ", feature value diff: " << featureValueDiff << endl;
if (featureValueDiff.GetL1Norm() == 0) {
cerr << "Rank " << rank << ", epoch " << epoch << ", features equal --> skip" << endl;
continue;
}
float loss = bleuScoresHope[i][j] - bleuScoresFear[i][j];
// check if constraint is violated
bool violated = false;
//float modelScoreDiff = featureValueDiff.InnerProduct(currWeights);
float modelScoreDiff = modelScoresHope[i][j] - modelScoresFear[i][j];
float diff = 0;
if (loss > modelScoreDiff)
diff = loss - modelScoreDiff;
cerr << "Rank " << rank << ", epoch " << epoch << ", constraint: " << modelScoreDiff << " >= " << loss << " (current violation: " << diff << ")" << endl;
if (diff > epsilon)
violated = true;
if (m_normaliseMargin) {
modelScoreDiff = (2*m_sigmoidParam/(1 + exp(-modelScoreDiff))) - m_sigmoidParam;
loss = (2*m_sigmoidParam/(1 + exp(-loss))) - m_sigmoidParam;
diff = 0;
if (loss > modelScoreDiff) {
diff = loss - modelScoreDiff;
}
cerr << "Rank " << rank << ", epoch " << epoch << ", normalised constraint: " << modelScoreDiff << " >= " << loss << " (current violation: " << diff << ")" << endl;
}
if (m_scale_margin) {
diff *= bleuScoresHope[i][j];
cerr << "Rank " << rank << ", epoch " << epoch << ", scaling margin with oracle bleu score " << bleuScoresHope[i][j] << endl;
}
featureValueDiffs.push_back(featureValueDiff);
lossMinusModelScoreDiffs.push_back(diff);
modelScoreDiffs.push_back(modelScoreDiff);
all_losses.push_back(loss);
if (violated) {
++violatedConstraintsBefore;
oldDistanceFromOptimum += diff;
}
}
}
// run optimisation: compute alphas for all given constraints
vector<float> alphas;
ScoreComponentCollection summedUpdate;
if (violatedConstraintsBefore > 0) {
cerr << "Rank " << rank << ", epoch " << epoch << ", number of constraints passed to optimizer: " <<
featureValueDiffs.size() << " (of which violated: " << violatedConstraintsBefore << ")" << endl;
if (m_slack != 0) {
alphas = Hildreth::optimise(featureValueDiffs, lossMinusModelScoreDiffs, m_slack);
} else {
alphas = Hildreth::optimise(featureValueDiffs, lossMinusModelScoreDiffs);
}
// Update the weight vector according to the alphas and the feature value differences
// * w' = w' + SUM alpha_i * (h_i(oracle) - h_i(hypothesis))
for (size_t k = 0; k < featureValueDiffs.size(); ++k) {
float alpha = alphas[k];
cerr << "Rank " << rank << ", epoch " << epoch << ", alpha: " << alpha << endl;
if (alpha != 0) {
// apply boosting factor
if (m_boost && modelScoreDiffs[k] <= 0) {
// factor between 1.5 and 3 (for Bleu scores between 5 and 20, the factor is within the boundaries)
float factor = min(1.5, log2(bleuScoresHope[0][0])); // TODO: make independent of number of oracles!!
factor = min(3.0f, factor);
alpha = alpha * factor;
cerr << "Rank " << rank << ", epoch " << epoch << ", apply boosting factor " << factor << " to update." << endl;
}
ScoreComponentCollection update(featureValueDiffs[k]);
update.MultiplyEquals(alpha);
// sum updates
summedUpdate.PlusEquals(update);
}
}
}
else {
cerr << "Rank " << rank << ", epoch " << epoch << ", no constraint violated for this batch" << endl;
// return 0;
return 1;
}
// apply learning rate
if (learning_rate != 1) {
cerr << "Rank " << rank << ", epoch " << epoch << ", apply learning rate " << learning_rate << " to update." << endl;
summedUpdate.MultiplyEquals(learning_rate);
}
// scale update by BLEU of oracle (for batch size 1 only)
if (featureValuesHope.size() == 1) {
if (m_scale_update) {
cerr << "Rank " << rank << ", epoch " << epoch << ", scaling summed update with oracle bleu score " << bleuScoresHope[0][0] << endl;
summedUpdate.MultiplyEquals(bleuScoresHope[0][0]);
}
}
//cerr << "Rank " << rank << ", epoch " << epoch << ", update: " << summedUpdate << endl;
weightUpdate.PlusEquals(summedUpdate);
// Sanity check: are there still violated constraints after optimisation?
/* int violatedConstraintsAfter = 0;
float newDistanceFromOptimum = 0;
for (size_t i = 0; i < featureValueDiffs.size(); ++i) {
float modelScoreDiff = featureValueDiffs[i].InnerProduct(currWeights);
float loss = all_losses[i];
float diff = loss - modelScoreDiff;
if (diff > epsilon) {
++violatedConstraintsAfter;
newDistanceFromOptimum += diff;
}
}
VERBOSE(1, "Rank " << rank << ", epoch " << epoch << ", violated constraint before: " << violatedConstraintsBefore << ", after: " << violatedConstraintsAfter << ", change: " << violatedConstraintsBefore - violatedConstraintsAfter << endl);
VERBOSE(1, "Rank " << rank << ", epoch " << epoch << ", error before: " << oldDistanceFromOptimum << ", after: " << newDistanceFromOptimum << ", change: " << oldDistanceFromOptimum - newDistanceFromOptimum << endl);*/
// return violatedConstraintsAfter;
return 0;
}
size_t MiraOptimiser::updateWeightsAnalytically(
ScoreComponentCollection& weightUpdate,
ScoreComponentCollection& featureValuesHope,
ScoreComponentCollection& featureValuesFear,
float bleuScoreHope,
float bleuScoreFear,
float modelScoreHope,
float modelScoreFear,
float learning_rate,
size_t rank,
size_t epoch) {
float epsilon = 0.0001;
float oldDistanceFromOptimum = 0;
bool constraintViolatedBefore = false;
// cerr << "Rank " << rank << ", epoch " << epoch << ", hope: " << featureValuesHope << endl;
// cerr << "Rank " << rank << ", epoch " << epoch << ", fear: " << featureValuesFear << endl;
ScoreComponentCollection featureValueDiff = featureValuesHope;
featureValueDiff.MinusEquals(featureValuesFear);
if (featureValueDiff.GetL1Norm() == 0) {
cerr << "Rank " << rank << ", epoch " << epoch << ", features equal --> skip" << endl;
return 1;
}
// cerr << "Rank " << rank << ", epoch " << epoch << ", hope - fear: " << featureValueDiff << endl;
// float modelScoreDiff = featureValueDiff.InnerProduct(currWeights);
float modelScoreDiff = modelScoreHope - modelScoreFear;
float loss = bleuScoreHope - bleuScoreFear;
float diff = 0;
if (loss > modelScoreDiff)
diff = loss - modelScoreDiff;
cerr << "Rank " << rank << ", epoch " << epoch << ", constraint: " << modelScoreDiff << " >= " << loss << " (current violation: " << diff << ")" << endl;
if (m_normaliseMargin) {
modelScoreDiff = (2*m_sigmoidParam/(1 + exp(-modelScoreDiff))) - m_sigmoidParam;
loss = (2*m_sigmoidParam/(1 + exp(-loss))) - m_sigmoidParam;
if (loss > modelScoreDiff)
diff = loss - modelScoreDiff;
cerr << "Rank " << rank << ", epoch " << epoch << ", normalised constraint: " << modelScoreDiff << " >= " << loss << " (current violation: " << diff << ")" << endl;
}
if (m_scale_margin) {
diff *= bleuScoreHope;
cerr << "Rank " << rank << ", epoch " << epoch << ", scaling margin with oracle bleu score " << bleuScoreHope << endl;
}
if (m_scale_margin_precision) {
diff *= (1+m_precision);
cerr << "Rank " << rank << ", epoch " << epoch << ", scaling margin with 1+precision: " << (1+m_precision) << endl;
}
if (diff > epsilon) {
// squash it between 0 and 1
//diff = tanh(diff);
//diff = (2/(1 + pow(2,-diff))) - 1;
/* if (m_normaliseMargin) {
diff = (2/(1 + exp(-diff))) - 1;
cerr << "Rank " << rank << ", epoch " << epoch << ", new margin: " << diff << endl;
}*/
// constraint violated
oldDistanceFromOptimum += diff;
constraintViolatedBefore = true;
// compute alpha for given constraint: (loss - model score diff) / || feature value diff ||^2
// featureValueDiff.GetL2Norm() * featureValueDiff.GetL2Norm() == featureValueDiff.InnerProduct(featureValueDiff)
// from Crammer&Singer 2006: alpha = min {C , l_t/ ||x||^2}
float squaredNorm = featureValueDiff.GetL2Norm() * featureValueDiff.GetL2Norm();
float alpha = diff / squaredNorm;
cerr << "Rank " << rank << ", epoch " << epoch << ", unclipped alpha: " << alpha << endl;
if (m_slack > 0 ) {
if (alpha > m_slack) {
alpha = m_slack;
}
else if (alpha < m_slack*(-1)) {
alpha = m_slack*(-1);
}
}
// apply learning rate
if (learning_rate != 1)
alpha = alpha * learning_rate;
if (m_scale_update) {
cerr << "Rank " << rank << ", epoch " << epoch << ", scaling update with oracle bleu score " << bleuScoreHope << endl;
alpha *= bleuScoreHope;
}
if (m_scale_update_precision) {
cerr << "Rank " << rank << ", epoch " << epoch << ", scaling update with 1+precision: " << (1+m_precision) << endl;
alpha *= (1+m_precision);
}
cerr << "Rank " << rank << ", epoch " << epoch << ", clipped/scaled alpha: " << alpha << endl;
// apply boosting factor
if (m_boost && modelScoreDiff <= 0) {
// factor between 1.5 and 3 (for Bleu scores between 5 and 20, the factor is within the boundaries)
float factor = min(1.5, log2(bleuScoreHope));
factor = min(3.0f, factor);
alpha = alpha * factor;
cerr << "Rank " << rank << ", epoch " << epoch << ", boosted alpha: " << alpha << endl;
}
featureValueDiff.MultiplyEquals(alpha);
weightUpdate.PlusEquals(featureValueDiff);
// cerr << "Rank " << rank << ", epoch " << epoch << ", update: " << weightUpdate << endl;
}
if (!constraintViolatedBefore) {
// constraint satisfied, nothing to do
cerr << "Rank " << rank << ", epoch " << epoch << ", constraint already satisfied" << endl;
return 1;
}
// sanity check: constraint still violated after optimisation?
/* ScoreComponentCollection newWeights(currWeights);
newWeights.PlusEquals(weightUpdate);
bool constraintViolatedAfter = false;
float newDistanceFromOptimum = 0;
featureValueDiff = featureValuesHope;
featureValueDiff.MinusEquals(featureValuesFear);
modelScoreDiff = featureValueDiff.InnerProduct(newWeights);
diff = loss - modelScoreDiff;
// approximate comparison between floats!
if (diff > epsilon) {
constraintViolatedAfter = true;
newDistanceFromOptimum += (loss - modelScoreDiff);
}
float hopeScore = featureValuesHope.InnerProduct(newWeights);
float fearScore = featureValuesFear.InnerProduct(newWeights);
cerr << "New hope score: " << hopeScore << endl;
cerr << "New fear score: " << fearScore << endl;
VERBOSE(0, "Rank " << rank << ", epoch " << epoch << ", check, constraint violated before? " << constraintViolatedBefore << ", after? " << constraintViolatedAfter << endl);
VERBOSE(0, "Rank " << rank << ", epoch " << epoch << ", check, error before: " << oldDistanceFromOptimum << ", after: " << newDistanceFromOptimum << ", change: " << oldDistanceFromOptimum - newDistanceFromOptimum << endl);
*/
return 0;
}
size_t MiraOptimiser::updateWeightsHopeFearSelective(
Moses::ScoreComponentCollection& weightUpdate,
const std::vector< std::vector<Moses::ScoreComponentCollection> >& featureValuesHope,
const std::vector< std::vector<Moses::ScoreComponentCollection> >& featureValuesFear,
const std::vector<std::vector<float> >& bleuScoresHope,
const std::vector<std::vector<float> >& bleuScoresFear,
const std::vector<std::vector<float> >& modelScoresHope,
const std::vector<std::vector<float> >& modelScoresFear,
float learning_rate,
size_t rank,
size_t epoch,
int updatePosition) {
// vector of feature values differences for all created constraints
vector<ScoreComponentCollection> nonZeroFeatures;
vector<float> lossMinusModelScoreDiffs;
// Make constraints for new hypothesis translations
float epsilon = 0.0001;
int violatedConstraintsBefore = 0;
// iterate over input sentences (1 (online) or more (batch))
for (size_t i = 0; i < featureValuesHope.size(); ++i) {
if (updatePosition != -1) {
if (i < updatePosition)
continue;
else if (i > updatePosition)
break;
}
// Pick all pairs[j,j] of hope and fear translations for one input sentence
for (size_t j = 0; j < featureValuesHope[i].size(); ++j) {
ScoreComponentCollection featureValueDiff = featureValuesHope[i][j];
featureValueDiff.MinusEquals(featureValuesFear[i][j]);
if (featureValueDiff.GetL1Norm() == 0) {
cerr << "Rank " << rank << ", epoch " << epoch << ", features equal --> skip" << endl;
continue;
}
// check if constraint is violated
float loss = bleuScoresHope[i][j] - bleuScoresFear[i][j];
float modelScoreDiff = modelScoresHope[i][j] - modelScoresFear[i][j];
float diff = 0;
if (loss > modelScoreDiff)
diff = loss - modelScoreDiff;
if (diff > epsilon)
++violatedConstraintsBefore;
cerr << "Rank " << rank << ", epoch " << epoch << ", constraint: " << modelScoreDiff << " >= " << loss << " (current violation: " << diff << ")" << endl;
// iterate over difference vector and add a constraint for every non-zero feature
FVector features = featureValueDiff.GetScoresVector();
size_t n_core = 0, n_sparse = 0, n_sparse_hope = 0, n_sparse_fear = 0;
for (size_t i=0; i<features.coreSize(); ++i) {
if (features[i] != 0.0) {
++n_core;
ScoreComponentCollection f;
f.Assign(i, features[i]);
nonZeroFeatures.push_back(f);
}
}
vector<ScoreComponentCollection> nonZeroFeaturesHope;
vector<ScoreComponentCollection> nonZeroFeaturesFear;
for (FVector::iterator i = features.begin(); i != features.end(); ++i) {
if (i->second != 0.0) {
ScoreComponentCollection f;
f.Assign((i->first).name(), i->second);
cerr << "Rank " << rank << ", epoch " << epoch << ", f: " << f << endl;
if (i->second > 0.0) {
++n_sparse_hope;
nonZeroFeaturesHope.push_back(f);
}
else {
++n_sparse_fear;
nonZeroFeaturesFear.push_back(f);
}
}
}
float n = n_core + n_sparse_hope + n_sparse_fear;
for (size_t i=0; i<n_core; ++i)
lossMinusModelScoreDiffs.push_back(diff/n);
for (size_t i=0; i<n_sparse_hope; ++i) {
nonZeroFeatures.push_back(nonZeroFeaturesHope[i]);
lossMinusModelScoreDiffs.push_back((diff/n)*1.1);
}
for (size_t i=0; i<n_sparse_fear; ++i) {
nonZeroFeatures.push_back(nonZeroFeaturesFear[i]);
lossMinusModelScoreDiffs.push_back(diff/n);
}
cerr << "Rank " << rank << ", epoch " << epoch << ", core diff: " << diff/n << endl;
cerr << "Rank " << rank << ", epoch " << epoch << ", hope diff: " << ((diff/n)*1.1) << endl;
cerr << "Rank " << rank << ", epoch " << epoch << ", fear diff: " << diff/n << endl;
}
}
assert(nonZeroFeatures.size() == lossMinusModelScoreDiffs.size());
// run optimisation: compute alphas for all given constraints
vector<float> alphas;
ScoreComponentCollection summedUpdate;
if (violatedConstraintsBefore > 0) {
cerr << "Rank " << rank << ", epoch " << epoch << ", number of constraints passed to optimizer: " << nonZeroFeatures.size() << endl;
alphas = Hildreth::optimise(nonZeroFeatures, lossMinusModelScoreDiffs, m_slack);
// Update the weight vector according to the alphas and the feature value differences
// * w' = w' + SUM alpha_i * (h_i(oracle) - h_i(hypothesis))
for (size_t k = 0; k < nonZeroFeatures.size(); ++k) {
float alpha = alphas[k];
cerr << "Rank " << rank << ", epoch " << epoch << ", alpha: " << alpha << endl;
if (alpha != 0) {
ScoreComponentCollection update(nonZeroFeatures[k]);
update.MultiplyEquals(alpha);
// sum updates
summedUpdate.PlusEquals(update);
}
}
}
else {
cerr << "Rank " << rank << ", epoch " << epoch << ", no constraint violated for this batch" << endl;
// return 0;
return 1;
}
// apply learning rate
if (learning_rate != 1) {
cerr << "Rank " << rank << ", epoch " << epoch << ", apply learning rate " << learning_rate << " to update." << endl;
summedUpdate.MultiplyEquals(learning_rate);
}
// scale update by BLEU of oracle (for batch size 1 only)
if (featureValuesHope.size() == 1) {
if (m_scale_update) {
cerr << "Rank " << rank << ", epoch " << epoch << ", scaling summed update with oracle bleu score " << bleuScoresHope[0][0] << endl;
summedUpdate.MultiplyEquals(bleuScoresHope[0][0]);
}
}
//cerr << "Rank " << rank << ", epoch " << epoch << ", update: " << summedUpdate << endl;
weightUpdate.PlusEquals(summedUpdate);
return 0;
}
size_t MiraOptimiser::updateWeightsHopeFearSummed(
Moses::ScoreComponentCollection& weightUpdate,
const std::vector< std::vector<Moses::ScoreComponentCollection> >& featureValuesHope,
const std::vector< std::vector<Moses::ScoreComponentCollection> >& featureValuesFear,
const std::vector<std::vector<float> >& bleuScoresHope,
const std::vector<std::vector<float> >& bleuScoresFear,
const std::vector<std::vector<float> >& modelScoresHope,
const std::vector<std::vector<float> >& modelScoresFear,
float learning_rate,
size_t rank,
size_t epoch,
bool rescaleSlack,
bool makePairs) {
// vector of feature values differences for all created constraints
ScoreComponentCollection averagedFeatureDiffs;
float averagedViolations = 0;
// Make constraints for new hypothesis translations
float epsilon = 0.0001;
int violatedConstraintsBefore = 0;
if (!makePairs) {
ScoreComponentCollection featureValueDiff;
float lossHope = 0, lossFear = 0, modelScoreHope = 0, modelScoreFear = 0, hopeCount = 0, fearCount = 0;
// add all hope vectors
for (size_t i = 0; i < featureValuesHope.size(); ++i) {
for (size_t j = 0; j < featureValuesHope[i].size(); ++j) {
featureValueDiff.PlusEquals(featureValuesHope[i][j]);
lossHope += bleuScoresHope[i][j];
modelScoreHope += modelScoresHope[i][j];
++hopeCount;
}
}
lossHope /= hopeCount;
modelScoreHope /= hopeCount;
// subtract all fear vectors
for (size_t i = 0; i < featureValuesFear.size(); ++i) {
for (size_t j = 0; j < featureValuesFear[i].size(); ++j) {
featureValueDiff.MinusEquals(featureValuesFear[i][j]);
lossFear += bleuScoresFear[i][j];
modelScoreFear += modelScoresFear[i][j];
++fearCount;
}
}
lossFear /= fearCount;
modelScoreFear /= fearCount;
if (featureValueDiff.GetL1Norm() == 0) {
cerr << "Rank " << rank << ", epoch " << epoch << ", features equal --> skip" << endl;
cerr << "Rank " << rank << ", epoch " << epoch << ", no constraint violated for this batch" << endl;
return 1;
}
// check if constraint is violated
float lossDiff = lossHope - lossFear;
float modelScoreDiff = modelScoreHope - modelScoreFear;
float diff = 0;
if (lossDiff > modelScoreDiff)
diff = lossDiff - modelScoreDiff;
if (diff > epsilon)
++violatedConstraintsBefore;
cerr << "Rank " << rank << ", epoch " << epoch << ", constraint: " << modelScoreDiff << " >= " << lossDiff << " (current violation: " <<\
diff << ")" << endl;
// add constraint
averagedFeatureDiffs = featureValueDiff;
averagedViolations = diff;
}
else {
// iterate over input sentences (1 (online) or more (batch))
for (size_t i = 0; i < featureValuesHope.size(); ++i) {
// Pick all pairs[j,j] of hope and fear translations for one input sentence and add them up
for (size_t j = 0; j < featureValuesHope[i].size(); ++j) {
ScoreComponentCollection featureValueDiff = featureValuesHope[i][j];
featureValueDiff.MinusEquals(featureValuesFear[i][j]);
if (featureValueDiff.GetL1Norm() == 0) {
cerr << "Rank " << rank << ", epoch " << epoch << ", features equal --> skip" << endl;
continue;
}
// check if constraint is violated
float lossDiff = bleuScoresHope[i][j] - bleuScoresFear[i][j];
float modelScoreDiff = modelScoresHope[i][j] - modelScoresFear[i][j];
if (rescaleSlack) {
cerr << "Rank " << rank << ", epoch " << epoch << ", modelScoreDiff scaled by lossDiff: " << modelScoreDiff << " --> " << modelScoreDiff*lossDiff << endl;
modelScoreDiff *= lossDiff;
}
float diff = 0;
if (lossDiff > modelScoreDiff)
diff = lossDiff - modelScoreDiff;
if (diff > epsilon)
++violatedConstraintsBefore;
cerr << "Rank " << rank << ", epoch " << epoch << ", constraint: " << modelScoreDiff << " >= " << lossDiff << " (current violation: " << diff << ")" << endl;
// add constraint
if (rescaleSlack) {
averagedFeatureDiffs.MultiplyEquals(lossDiff);
cerr << "Rank " << rank << ", epoch " << epoch << ", featureValueDiff scaled by lossDiff." << endl;
}
averagedFeatureDiffs.PlusEquals(featureValueDiff);
averagedViolations += diff;
}
}
}
// divide by number of constraints (1/n)
if (!makePairs) {
averagedFeatureDiffs.DivideEquals(featureValuesHope[0].size());
}
else {
averagedFeatureDiffs.DivideEquals(featureValuesHope[0].size());
averagedViolations /= featureValuesHope[0].size();
}
//cerr << "Rank " << rank << ", epoch " << epoch << ", averaged feature diffs: " << averagedFeatureDiffs << endl;
cerr << "Rank " << rank << ", epoch " << epoch << ", averaged violations: " << averagedViolations << endl;
if (violatedConstraintsBefore > 0) {
// compute alpha for given constraint: (loss diff - model score diff) / || feature value diff ||^2
// featureValueDiff.GetL2Norm() * featureValueDiff.GetL2Norm() == featureValueDiff.InnerProduct(featureValueDiff)
// from Crammer&Singer 2006: alpha = min {C , l_t/ ||x||^2}
// adjusted for 1 slack according to Joachims 2009, OP4 (margin rescaling), OP5 (slack rescaling)
float squaredNorm = averagedFeatureDiffs.GetL2Norm() * averagedFeatureDiffs.GetL2Norm();
float alpha = averagedViolations / squaredNorm;
cerr << "Rank " << rank << ", epoch " << epoch << ", unclipped alpha: " << alpha << endl;
if (m_slack > 0 ) {
if (alpha > m_slack) {
alpha = m_slack;
}
else if (alpha < m_slack*(-1)) {
alpha = m_slack*(-1);
}
}
cerr << "Rank " << rank << ", epoch " << epoch << ", clipped alpha: " << alpha << endl;
// compute update
averagedFeatureDiffs.MultiplyEquals(alpha);
weightUpdate.PlusEquals(averagedFeatureDiffs);
return 0;
}
else {
cerr << "Rank " << rank << ", epoch " << epoch << ", no constraint violated for this batch" << endl;
return 1;
}
}
}