mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-27 05:55:02 +03:00
359 lines
10 KiB
C++
359 lines
10 KiB
C++
#include "BleuScorer.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <climits>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <stdexcept>
|
|
|
|
#include "util/exception.hh"
|
|
#include "Ngram.h"
|
|
#include "Reference.h"
|
|
#include "Util.h"
|
|
#include "ScoreDataIterator.h"
|
|
#include "FeatureDataIterator.h"
|
|
#include "Vocabulary.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace
|
|
{
|
|
|
|
// configure regularisation
|
|
const char KEY_REFLEN[] = "reflen";
|
|
const char REFLEN_AVERAGE[] = "average";
|
|
const char REFLEN_SHORTEST[] = "shortest";
|
|
const char REFLEN_CLOSEST[] = "closest";
|
|
|
|
} // namespace
|
|
|
|
namespace MosesTuning
|
|
{
|
|
|
|
|
|
BleuScorer::BleuScorer(const string& config)
|
|
: StatisticsBasedScorer("BLEU", config),
|
|
m_ref_length_type(CLOSEST)
|
|
{
|
|
const string reflen = getConfig(KEY_REFLEN, REFLEN_CLOSEST);
|
|
if (reflen == REFLEN_AVERAGE) {
|
|
m_ref_length_type = AVERAGE;
|
|
} else if (reflen == REFLEN_SHORTEST) {
|
|
m_ref_length_type = SHORTEST;
|
|
} else if (reflen == REFLEN_CLOSEST) {
|
|
m_ref_length_type = CLOSEST;
|
|
} else {
|
|
throw runtime_error("Unknown reference length strategy: " + reflen);
|
|
}
|
|
}
|
|
|
|
BleuScorer::~BleuScorer() {}
|
|
|
|
size_t BleuScorer::CountNgrams(const string& line, NgramCounts& counts,
|
|
unsigned int n, bool is_testing)
|
|
{
|
|
assert(n > 0);
|
|
vector<int> encoded_tokens;
|
|
|
|
// When performing tokenization of a hypothesis translation, we don't have
|
|
// to update the Scorer's word vocabulary. However, the tokenization of
|
|
// reference translations requires modifying the vocabulary, which means
|
|
// this procedure might be slower than the tokenization the hypothesis
|
|
// translation.
|
|
if (is_testing) {
|
|
TokenizeAndEncodeTesting(line, encoded_tokens);
|
|
} else {
|
|
TokenizeAndEncode(line, encoded_tokens);
|
|
}
|
|
const size_t len = encoded_tokens.size();
|
|
vector<int> ngram;
|
|
|
|
for (size_t k = 1; k <= n; ++k) {
|
|
//ngram order longer than sentence - no point
|
|
if (k > len) {
|
|
continue;
|
|
}
|
|
for (size_t i = 0; i < len - k + 1; ++i) {
|
|
ngram.clear();
|
|
ngram.reserve(len);
|
|
for (size_t j = i; j < i+k && j < len; ++j) {
|
|
ngram.push_back(encoded_tokens[j]);
|
|
}
|
|
counts.Add(ngram);
|
|
}
|
|
}
|
|
return len;
|
|
}
|
|
|
|
void BleuScorer::setReferenceFiles(const vector<string>& referenceFiles)
|
|
{
|
|
// Make sure reference data is clear
|
|
m_references.reset();
|
|
mert::VocabularyFactory::GetVocabulary()->clear();
|
|
|
|
//load reference data
|
|
for (size_t i = 0; i < referenceFiles.size(); ++i) {
|
|
TRACE_ERR("Loading reference from " << referenceFiles[i] << endl);
|
|
|
|
if (!OpenReference(referenceFiles[i].c_str(), i)) {
|
|
throw runtime_error("Unable to open " + referenceFiles[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool BleuScorer::OpenReference(const char* filename, size_t file_id)
|
|
{
|
|
ifstream ifs(filename);
|
|
if (!ifs) {
|
|
cerr << "Cannot open " << filename << endl;
|
|
return false;
|
|
}
|
|
return OpenReferenceStream(&ifs, file_id);
|
|
}
|
|
|
|
bool BleuScorer::OpenReferenceStream(istream* is, size_t file_id)
|
|
{
|
|
if (is == NULL) return false;
|
|
|
|
string line;
|
|
size_t sid = 0;
|
|
while (getline(*is, line)) {
|
|
line = preprocessSentence(line);
|
|
if (file_id == 0) {
|
|
Reference* ref = new Reference;
|
|
m_references.push_back(ref); // Take ownership of the Reference object.
|
|
}
|
|
if (m_references.size() <= sid) {
|
|
cerr << "Reference " << file_id << "has too many sentences." << endl;
|
|
return false;
|
|
}
|
|
NgramCounts counts;
|
|
size_t length = CountNgrams(line, counts, kBleuNgramOrder);
|
|
|
|
//for any counts larger than those already there, merge them in
|
|
for (NgramCounts::const_iterator ci = counts.begin(); ci != counts.end(); ++ci) {
|
|
const NgramCounts::Key& ngram = ci->first;
|
|
const NgramCounts::Value newcount = ci->second;
|
|
|
|
NgramCounts::Value oldcount = 0;
|
|
m_references[sid]->get_counts()->Lookup(ngram, &oldcount);
|
|
if (newcount > oldcount) {
|
|
m_references[sid]->get_counts()->operator[](ngram) = newcount;
|
|
}
|
|
}
|
|
//add in the length
|
|
m_references[sid]->push_back(length);
|
|
if (sid > 0 && sid % 100 == 0) {
|
|
TRACE_ERR(".");
|
|
}
|
|
++sid;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void BleuScorer::prepareStats(size_t sid, const string& text, ScoreStats& entry)
|
|
{
|
|
if (sid >= m_references.size()) {
|
|
stringstream msg;
|
|
msg << "Sentence id (" << sid << ") not found in reference set";
|
|
throw runtime_error(msg.str());
|
|
}
|
|
NgramCounts testcounts;
|
|
// stats for this line
|
|
vector<ScoreStatsType> stats(kBleuNgramOrder * 2);
|
|
string sentence = preprocessSentence(text);
|
|
const size_t length = CountNgrams(sentence, testcounts, kBleuNgramOrder, true);
|
|
|
|
const int reference_len = CalcReferenceLength(sid, length);
|
|
stats.push_back(reference_len);
|
|
|
|
//precision on each ngram type
|
|
for (NgramCounts::const_iterator testcounts_it = testcounts.begin();
|
|
testcounts_it != testcounts.end(); ++testcounts_it) {
|
|
const NgramCounts::Value guess = testcounts_it->second;
|
|
const size_t len = testcounts_it->first.size();
|
|
NgramCounts::Value correct = 0;
|
|
|
|
NgramCounts::Value v = 0;
|
|
if (m_references[sid]->get_counts()->Lookup(testcounts_it->first, &v)) {
|
|
correct = min(v, guess);
|
|
}
|
|
stats[len * 2 - 2] += correct;
|
|
stats[len * 2 - 1] += guess;
|
|
}
|
|
entry.set(stats);
|
|
}
|
|
|
|
statscore_t BleuScorer::calculateScore(const vector<int>& comps) const
|
|
{
|
|
UTIL_THROW_IF(comps.size() != kBleuNgramOrder * 2 + 1, util::Exception, "Error");
|
|
|
|
float logbleu = 0.0;
|
|
for (int i = 0; i < kBleuNgramOrder; ++i) {
|
|
if (comps[2*i] == 0) {
|
|
return 0.0;
|
|
}
|
|
logbleu += log(comps[2*i]) - log(comps[2*i+1]);
|
|
|
|
}
|
|
logbleu /= kBleuNgramOrder;
|
|
// reflength divided by test length
|
|
const float brevity = 1.0 - static_cast<float>(comps[kBleuNgramOrder * 2]) / comps[1];
|
|
if (brevity < 0.0) {
|
|
logbleu += brevity;
|
|
}
|
|
return exp(logbleu);
|
|
}
|
|
|
|
int BleuScorer::CalcReferenceLength(size_t sentence_id, size_t length)
|
|
{
|
|
switch (m_ref_length_type) {
|
|
case AVERAGE:
|
|
return m_references[sentence_id]->CalcAverage();
|
|
break;
|
|
case CLOSEST:
|
|
return m_references[sentence_id]->CalcClosest(length);
|
|
break;
|
|
case SHORTEST:
|
|
return m_references[sentence_id]->CalcShortest();
|
|
break;
|
|
default:
|
|
cerr << "unknown reference types." << endl;
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
void BleuScorer::DumpCounts(ostream* os,
|
|
const NgramCounts& counts) const
|
|
{
|
|
for (NgramCounts::const_iterator it = counts.begin();
|
|
it != counts.end(); ++it) {
|
|
*os << "(";
|
|
const NgramCounts::Key& keys = it->first;
|
|
for (size_t i = 0; i < keys.size(); ++i) {
|
|
if (i != 0) {
|
|
*os << " ";
|
|
}
|
|
*os << keys[i];
|
|
}
|
|
*os << ") : " << it->second << ", ";
|
|
}
|
|
*os << endl;
|
|
}
|
|
|
|
float smoothedSentenceBleu
|
|
(const std::vector<float>& stats, float smoothing, bool smoothBP)
|
|
{
|
|
UTIL_THROW_IF(stats.size() != kBleuNgramOrder * 2 + 1, util::Exception, "Error");
|
|
|
|
float logbleu = 0.0;
|
|
for (int j = 0; j < kBleuNgramOrder; j++) {
|
|
logbleu += log(stats[2 * j] + smoothing) - log(stats[2 * j + 1] + smoothing);
|
|
}
|
|
logbleu /= kBleuNgramOrder;
|
|
const float reflength = stats[(kBleuNgramOrder * 2)] +
|
|
(smoothBP ? smoothing : 0.0f);
|
|
const float brevity = 1.0 - reflength / stats[1];
|
|
|
|
if (brevity < 0.0) {
|
|
logbleu += brevity;
|
|
}
|
|
return exp(logbleu);
|
|
}
|
|
|
|
float sentenceLevelBackgroundBleu(const std::vector<float>& sent, const std::vector<float>& bg)
|
|
{
|
|
// Sum sent and background
|
|
std::vector<float> stats;
|
|
UTIL_THROW_IF(sent.size()!=bg.size(), util::Exception, "Error");
|
|
UTIL_THROW_IF(sent.size() != kBleuNgramOrder * 2 + 1, util::Exception, "Error");
|
|
|
|
for(size_t i=0; i<sent.size(); i++)
|
|
stats.push_back(sent[i]+bg[i]);
|
|
|
|
// Calculate BLEU
|
|
float logbleu = 0.0;
|
|
for (int j = 0; j < kBleuNgramOrder; j++) {
|
|
logbleu += log(stats[2 * j]) - log(stats[2 * j + 1]);
|
|
}
|
|
logbleu /= kBleuNgramOrder;
|
|
const float brevity = 1.0 - stats[(kBleuNgramOrder * 2)] / stats[1];
|
|
|
|
if (brevity < 0.0) {
|
|
logbleu += brevity;
|
|
}
|
|
|
|
// Exponentiate and scale by reference length (as per Chiang et al 08)
|
|
return exp(logbleu) * stats[kBleuNgramOrder*2];
|
|
}
|
|
|
|
float unsmoothedBleu(const std::vector<float>& stats)
|
|
{
|
|
UTIL_THROW_IF(stats.size() != kBleuNgramOrder * 2 + 1, util::Exception, "Error");
|
|
|
|
float logbleu = 0.0;
|
|
for (int j = 0; j < kBleuNgramOrder; j++) {
|
|
logbleu += log(stats[2 * j]) - log(stats[2 * j + 1]);
|
|
}
|
|
logbleu /= kBleuNgramOrder;
|
|
const float brevity = 1.0 - stats[(kBleuNgramOrder * 2)] / stats[1];
|
|
|
|
if (brevity < 0.0) {
|
|
logbleu += brevity;
|
|
}
|
|
return exp(logbleu);
|
|
}
|
|
|
|
vector<float> BleuScorer::ScoreNbestList(const string& scoreFile, const string& featureFile)
|
|
{
|
|
vector<string> scoreFiles;
|
|
vector<string> featureFiles;
|
|
scoreFiles.push_back(scoreFile);
|
|
featureFiles.push_back(featureFile);
|
|
|
|
vector<FeatureDataIterator> featureDataIters;
|
|
vector<ScoreDataIterator> scoreDataIters;
|
|
for (size_t i = 0; i < featureFiles.size(); ++i) {
|
|
featureDataIters.push_back(FeatureDataIterator(featureFiles[i]));
|
|
scoreDataIters.push_back(ScoreDataIterator(scoreFiles[i]));
|
|
}
|
|
|
|
vector<pair<size_t,size_t> > hypotheses;
|
|
if (featureDataIters[0] == FeatureDataIterator::end()) {
|
|
cerr << "Error: at the end of feature data iterator" << endl;
|
|
exit(1);
|
|
}
|
|
for (size_t i = 0; i < featureFiles.size(); ++i) {
|
|
if (featureDataIters[i] == FeatureDataIterator::end()) {
|
|
cerr << "Error: Feature file " << i << " ended prematurely" << endl;
|
|
exit(1);
|
|
}
|
|
if (scoreDataIters[i] == ScoreDataIterator::end()) {
|
|
cerr << "Error: Score file " << i << " ended prematurely" << endl;
|
|
exit(1);
|
|
}
|
|
if (featureDataIters[i]->size() != scoreDataIters[i]->size()) {
|
|
cerr << "Error: features and scores have different size" << endl;
|
|
exit(1);
|
|
}
|
|
for (size_t j = 0; j < featureDataIters[i]->size(); ++j) {
|
|
hypotheses.push_back(pair<size_t,size_t>(i,j));
|
|
}
|
|
}
|
|
|
|
// score the nbest list
|
|
vector<float> bleuScores;
|
|
for (size_t i=0; i < hypotheses.size(); ++i) {
|
|
pair<size_t,size_t> translation = hypotheses[i];
|
|
float bleu = smoothedSentenceBleu(scoreDataIters[translation.first]->operator[](translation.second));
|
|
bleuScores.push_back(bleu);
|
|
}
|
|
return bleuScores;
|
|
}
|
|
|
|
|
|
|
|
}
|