mosesdecoder/moses/BleuScoreFeature.h
2013-01-29 10:54:09 +00:00

162 lines
5.2 KiB
C++

#ifndef BLUESCOREFEATURE_H
#define BLUESCOREFEATURE_H
#include <utility>
#include <string>
#include <vector>
#include <boost/unordered_map.hpp>
#include "FeatureFunction.h"
#include "FFState.h"
#include "Phrase.h"
#include "ChartHypothesis.h"
namespace Moses {
class BleuScoreFeature;
class BleuScoreState : public FFState {
public:
friend class BleuScoreFeature;
static size_t bleu_order;
BleuScoreState();
virtual int Compare(const FFState& other) const;
void print(std::ostream& out) const;
private:
Phrase m_words;
size_t m_source_length;
size_t m_target_length;
// scaled reference length is needed for scoring incomplete hypotheses against reference translation
float m_scaled_ref_length;
std::vector< size_t > m_ngram_counts;
std::vector< size_t > m_ngram_matches;
void AddNgramCountAndMatches(std::vector< size_t >& counts, std::vector< size_t >& matches);
};
std::ostream& operator<<(std::ostream& out, const BleuScoreState& state);
typedef boost::unordered_map< Phrase, size_t > NGrams;
class RefValue : public std::pair<std::vector<size_t>,NGrams>
{
public:
RefValue& operator=( const RefValue& rhs ) {
first = rhs.first;
second = rhs.second;
return *this;
}
};
class BleuScoreFeature : public StatefulFeatureFunction {
public:
typedef boost::unordered_map<size_t, RefValue > RefCounts;
typedef boost::unordered_map<size_t, NGrams> Matches;
BleuScoreFeature(const std::string &line);
void PrintHistory(std::ostream& out) const;
void LoadReferences(const std::vector< std::vector< std::string > > &);
void SetCurrSourceLength(size_t);
void SetCurrNormSourceLength(size_t);
void SetCurrShortestRefLength(size_t);
void SetCurrAvgRefLength(size_t sent_id);
void SetAvgInputLength (float l) { m_avg_input_length = l; }
void SetCurrReferenceNgrams(size_t sent_id);
size_t GetShortestRefIndex(size_t ref_id);
size_t GetClosestRefLength(size_t ref_id, int hypoLength);
void UpdateHistory(const std::vector< const Word* >&);
void UpdateHistory(const std::vector< std::vector< const Word* > >& hypos, std::vector<size_t>& sourceLengths, std::vector<size_t>& ref_ids, size_t rank, size_t epoch);
void PrintRefLength(const std::vector<size_t>& ref_ids);
void SetBleuParameters(bool disable, bool sentenceBleu, bool scaleByInputLength, bool scaleByAvgInputLength,
bool scaleByInverseLength, bool scaleByAvgInverseLength,
float scaleByX, float historySmoothing, size_t scheme, bool simpleHistoryBleu);
void GetNgramMatchCounts(Phrase&,
const NGrams&,
std::vector< size_t >&,
std::vector< size_t >&,
size_t skip = 0) const;
void GetNgramMatchCounts_prefix(Phrase&,
const NGrams&,
std::vector< size_t >&,
std::vector< size_t >&,
size_t new_start_indices,
size_t last_end_index) const;
void GetNgramMatchCounts_overlap(Phrase& phrase,
const NGrams& ref_ngram_counts,
std::vector< size_t >& ret_counts,
std::vector< size_t >& ret_matches,
size_t overlap_index) const;
void GetClippedNgramMatchesAndCounts(Phrase&,
const NGrams&,
std::vector< size_t >&,
std::vector< size_t >&,
size_t skip = 0) const;
FFState* Evaluate( const Hypothesis& cur_hypo,
const FFState* prev_state,
ScoreComponentCollection* accumulator) const;
FFState* EvaluateChart(const ChartHypothesis& cur_hypo,
int featureID,
ScoreComponentCollection* accumulator) const;
bool Enabled() const { return m_enabled; }
float CalculateBleu(BleuScoreState*) const;
float CalculateBleu(Phrase translation) const;
const FFState* EmptyHypothesisState(const InputType&) const;
float GetSourceLengthHistory() { return m_source_length_history; }
float GetTargetLengthHistory() { return m_target_length_history; }
float GetAverageInputLength() { return m_avg_input_length; }
private:
bool m_enabled;
bool m_sentence_bleu;
bool m_simple_history_bleu;
// counts for pseudo-document
std::vector< float > m_count_history;
std::vector< float > m_match_history;
float m_source_length_history;
float m_target_length_history;
float m_ref_length_history;
size_t m_cur_source_length;
size_t m_cur_norm_source_length; // length without <s>, </s>
RefCounts m_refs;
NGrams m_cur_ref_ngrams;
float m_cur_ref_length;
// scale BLEU score by history of input length
bool m_scale_by_input_length;
bool m_scale_by_avg_input_length;
// scale by the inverse of the input length * 100
bool m_scale_by_inverse_length;
bool m_scale_by_avg_inverse_length;
float m_avg_input_length;
float m_scale_by_x;
// smoothing factor for history counts
float m_historySmoothing;
enum SmoothingScheme { PLUS_ONE = 1, PLUS_POINT_ONE = 2, PAPINENI = 3 };
SmoothingScheme m_smoothing_scheme;
};
} // Namespace.
#endif //BLUESCOREFEATURE_H