mosesdecoder/scripts/analysis/bootstrap-hypothesis-difference-significance.pl
2009-05-12 18:56:01 +00:00

320 lines
7.2 KiB
Perl
Executable File

#!/usr/bin/perl
###############################################
# An implementation of paired bootstrap resampling for testing the statistical
# significance of the difference between two systems from (Koehn 2004 @ EMNLP)
#
# Usage: ./compare-hypotheses-with-significance.pl hypothesis_1 hypothesis_2 reference_1 [ reference_2 ... ]
#
# Author: Mark Fishel, fishel@ut.ee
#
# 22.10: altered algorithm according to (Riezler and Maxwell 2005 @ MTSE'05), now computes p-value
###############################################
use strict;
#constants
my $TIMES_TO_REPEAT_SUBSAMPLING = 1000;
my $SUBSAMPLE_SIZE = 0; # if 0 then subsample size is equal to the whole set
my $TMP_PREFIX = "/tmp/signigicance_test_file_";
my $MAX_NGRAMS_FOR_BLEU = 4;
#checking cmdline argument consistency
if (@ARGV < 3) {
print STDERR "Usage: ./bootstrap-hypothesis-difference-significance.pl hypothesis_1 hypothesis_2 reference_1 [ reference_2 ... ]\n";
unless ($ARGV[0] =~ /^(--help|-help|-h|-\?|\/\?|--usage|-usage)$/) {
die("\nERROR: not enough arguments");
}
exit 1;
}
print "reading data; " . `date`;
#read all data
my $data = readAllData(@ARGV);
#start comparing
print "comparing hypotheses; " . `date`;
my @subSampleBleuDiffArr;
my @subSampleBleu1Arr;
my @subSampleBleu2Arr;
#applying sampling
for (1..$TIMES_TO_REPEAT_SUBSAMPLING) {
my $subSampleIndices = drawWithReplacement($data->{size}, ($SUBSAMPLE_SIZE? $SUBSAMPLE_SIZE: $data->{size}));
my $bleu1 = getBleu($data->{refs}, $data->{hyp1}, $subSampleIndices);
my $bleu2 = getBleu($data->{refs}, $data->{hyp2}, $subSampleIndices);
push @subSampleBleuDiffArr, abs($bleu2 - $bleu1);
push @subSampleBleu1Arr, $bleu1;
push @subSampleBleu2Arr, $bleu2;
if ($_ % int($TIMES_TO_REPEAT_SUBSAMPLING / 100) == 0) {
print "$_ / $TIMES_TO_REPEAT_SUBSAMPLING " . `date`;
}
}
#get subsample bleu difference mean
my $averageSubSampleBleuDiff = 0;
for my $subSampleDiff (@subSampleBleuDiffArr) {
$averageSubSampleBleuDiff += $subSampleDiff;
}
$averageSubSampleBleuDiff /= $TIMES_TO_REPEAT_SUBSAMPLING;
print "average subsample bleu: $averageSubSampleBleuDiff " . `date`;
#calculating p-value
my $count = 0;
my $realBleuDiff = abs(getBleu($data->{refs}, $data->{hyp2}) - getBleu($data->{refs}, $data->{hyp1}));
for my $subSampleDiff (@subSampleBleuDiffArr) {
# my $op;
if ($subSampleDiff - $averageSubSampleBleuDiff >= $realBleuDiff) {
$count++;
# $op = ">=";
}
else {
# $op = "< ";
}
# print "$subSampleDiff - $averageSubSampleBleuDiff $op $realBleuDiff\n";
}
my $result = ($count + 1) / $TIMES_TO_REPEAT_SUBSAMPLING;
print "Assuming that essentially the same system generated the two hypothesis translations (null-hypothesis),\n";
print "the probability of actually getting them (p-value) is: $result.\n";
my @sorted1 = sort @subSampleBleu1Arr;
my @sorted2 = sort @subSampleBleu2Arr;
print "95% confidence interval for hypothesis 1: " . $sorted1[25] . " -- " . $sorted1[924] . "\n";
print "95% confidence interval for hypothesis 2: " . $sorted2[25] . " -- " . $sorted2[924] . "\n";
#####
# read 2 hyp and 1 to \infty ref data files
#####
sub readAllData {
my ($hypFile1, $hypFile2, @refFiles) = @_;
my %result;
#reading hypotheses and checking for matching sizes
$result{hyp1} = readData($hypFile1);
$result{size} = scalar @{$result{hyp1}};
$result{hyp2} = readData($hypFile2);
unless (scalar @{$result{hyp2}} == $result{size}) {
die ("ERROR: sizes of hypothesis sets 1 and 2 don't match");
}
#reading reference(s) and checking for matching sizes
$result{refs} = [];
my $i = 0;
for my $refFile (@refFiles) {
$i++;
my $refDataX = readData($refFile);
unless (scalar @$refDataX == $result{size}) {
die ("ERROR: ref set $i size doesn't match the size of hyp sets");
}
push @{$result{refs}}, $refDataX;
}
return \%result;
}
#####
# read sentences from file
#####
sub readData {
my $file = shift;
my @result;
open (FILE, $file) or die ("Failed to open `$file' for reading");
while (<FILE>) {
push @result, [split(/\s+/, $_)];
}
close (FILE);
return \@result;
}
#####
# draw a subsample of size $subSize from set (0..$setSize) with replacement
#####
sub drawWithReplacement {
my ($setSize, $subSize) = @_;
my @result;
for (1..$subSize) {
push @result, int(rand($setSize));
}
return \@result;
}
#####
# refs: arrayref of different references, reference = array of lines, line = array of words, word = string
# hyp: arrayref of lines of hypothesis translation, line = array of words, word = string
# idxs: indices of lines to include; default value - full set (0..size_of_hyp-1)
#####
sub getBleu {
my ($refs, $hyp, $idxs) = @_;
#default value for $idxs
unless (defined($idxs)) {
$idxs = [0..((scalar @$hyp) - 1)];
}
#vars
my ($hypothesisLength, $referenceLength) = (0, 0);
my (@correctNgramCounts, @totalNgramCounts);
my ($refNgramCounts, $hypNgramCounts);
#gather info from each line
for my $lineIdx (@$idxs) {
my $hypSnt = $hyp->[$lineIdx];
#update total hyp len
$hypothesisLength += scalar @$hypSnt;
#update total ref len with closest current ref len
$referenceLength += getClosestLength($refs, $lineIdx, $hypothesisLength);
#update ngram precision for each n-gram order
for my $order (1..$MAX_NGRAMS_FOR_BLEU) {
#hyp ngrams
$hypNgramCounts = groupNgrams($hypSnt, $order);
#ref ngrams
$refNgramCounts = groupNgramsMultiSrc($refs, $lineIdx, $order);
#correct, total
for my $ngram (keys %$hypNgramCounts) {
$correctNgramCounts[$order] += min($hypNgramCounts->{$ngram}, $refNgramCounts->{$ngram});
$totalNgramCounts[$order] += $hypNgramCounts->{$ngram};
}
}
}
#compose bleu score
my $brevityPenalty = ($hypothesisLength < $referenceLength)? exp(1 - $referenceLength/$hypothesisLength): 1;
my $logsum = 0;
for my $order (1..$MAX_NGRAMS_FOR_BLEU) {
$logsum += safeLog($correctNgramCounts[$order] / $totalNgramCounts[$order]);
}
return $brevityPenalty * exp($logsum / $MAX_NGRAMS_FOR_BLEU);
}
#####
#
#####
sub getClosestLength {
my ($refs, $lineIdx, $hypothesisLength) = @_;
my $bestDiff = infty();
my $bestLen = infty();
my ($currLen, $currDiff);
for my $ref (@$refs) {
$currLen = scalar @{$ref->[$lineIdx]};
$currDiff = abs($currLen - $hypothesisLength);
if ($currDiff < $bestDiff or ($currDiff == $bestDiff and $currLen < $bestLen)) {
$bestDiff = $currDiff;
$bestLen = $currLen;
}
}
return $bestLen;
}
#####
#
#####
sub groupNgrams {
my ($snt, $order) = @_;
my %result;
my $size = scalar @$snt;
my $ngram;
for my $i (0..($size-$order)) {
$ngram = join(" ", @$snt[$i..($i + $order - 1)]);
$result{$ngram}++;
}
return \%result;
}
#####
#
#####
sub groupNgramsMultiSrc {
my ($refs, $lineIdx, $order) = @_;
my %result;
for my $ref (@$refs) {
my $currNgramCounts = groupNgrams($ref->[$lineIdx], $order);
for my $currNgram (keys %$currNgramCounts) {
$result{$currNgram} = max($result{$currNgram}, $currNgramCounts->{$currNgram});
}
}
return \%result;
}
#####
#
#####
sub safeLog {
my $x = shift;
return ($x > 0)? log($x): -infty();
}
#####
#
#####
sub infty {
return 1e6000;
}
#####
#
#####
sub min {
my ($a, $b) = @_;
return ($a < $b)? $a: $b;
}
#####
#
#####
sub max {
my ($a, $b) = @_;
return ($a > $b)? $a: $b;
}