mosesdecoder/moses/SearchNormalBatch.cpp
2013-09-27 09:35:24 +01:00

221 lines
7.2 KiB
C++

#include "SearchNormalBatch.h"
#include "LM/Base.h"
#include "Manager.h"
#include "Hypothesis.h"
//#include <google/profiler.h>
using namespace std;
namespace Moses
{
SearchNormalBatch::SearchNormalBatch(Manager& manager, const InputType &source, const TranslationOptionCollection &transOptColl)
:SearchNormal(manager, source, transOptColl)
,m_batch_size(10000)
{
m_max_stack_size = StaticData::Instance().GetMaxHypoStackSize();
// Split the feature functions into sets of stateless, stateful
// distributed lm, and stateful non-distributed.
const vector<const StatefulFeatureFunction*>& ffs =
StatefulFeatureFunction::GetStatefulFeatureFunctions();
for (unsigned i = 0; i < ffs.size(); ++i) {
if (ffs[i]->GetScoreProducerDescription() == "DLM_5gram") { // TODO WFT
m_dlm_ffs[i] = const_cast<LanguageModel*>(static_cast<const LanguageModel* const>(ffs[i]));
m_dlm_ffs[i]->SetFFStateIdx(i);
} else {
m_stateful_ffs[i] = const_cast<StatefulFeatureFunction*>(ffs[i]);
}
}
m_stateless_ffs = StatelessFeatureFunction::GetStatelessFeatureFunctions();
}
SearchNormalBatch::~SearchNormalBatch()
{
}
/**
* Main decoder loop that translates a sentence by expanding
* hypotheses stack by stack, until the end of the sentence.
*/
void SearchNormalBatch::ProcessSentence()
{
const StaticData &staticData = StaticData::Instance();
SentenceStats &stats = m_manager.GetSentenceStats();
clock_t t=0; // used to track time for steps
// initial seed hypothesis: nothing translated, no words produced
Hypothesis *hypo = Hypothesis::Create(m_manager,m_source, m_initialTransOpt);
m_hypoStackColl[0]->AddPrune(hypo);
// go through each stack
std::vector < HypothesisStack* >::iterator iterStack;
for (iterStack = m_hypoStackColl.begin() ; iterStack != m_hypoStackColl.end() ; ++iterStack) {
// check if decoding ran out of time
double _elapsed_time = GetUserTime();
if (_elapsed_time > staticData.GetTimeoutThreshold()) {
VERBOSE(1,"Decoding is out of time (" << _elapsed_time << "," << staticData.GetTimeoutThreshold() << ")" << std::endl);
interrupted_flag = 1;
return;
}
HypothesisStackNormal &sourceHypoColl = *static_cast<HypothesisStackNormal*>(*iterStack);
// the stack is pruned before processing (lazy pruning):
VERBOSE(3,"processing hypothesis from next stack");
IFVERBOSE(2) {
t = clock();
}
sourceHypoColl.PruneToSize(staticData.GetMaxHypoStackSize());
VERBOSE(3,std::endl);
sourceHypoColl.CleanupArcList();
IFVERBOSE(2) {
stats.AddTimeStack( clock()-t );
}
// go through each hypothesis on the stack and try to expand it
HypothesisStackNormal::const_iterator iterHypo;
for (iterHypo = sourceHypoColl.begin() ; iterHypo != sourceHypoColl.end() ; ++iterHypo) {
Hypothesis &hypothesis = **iterHypo;
ProcessOneHypothesis(hypothesis); // expand the hypothesis
}
EvalAndMergePartialHypos();
// some logging
IFVERBOSE(2) {
OutputHypoStackSize();
}
// this stack is fully expanded;
actual_hypoStack = &sourceHypoColl;
}
EvalAndMergePartialHypos();
// some more logging
IFVERBOSE(2) {
m_manager.GetSentenceStats().SetTimeTotal( clock()-m_start );
}
VERBOSE(2, m_manager.GetSentenceStats());
}
/**
* Expand one hypothesis with a translation option.
* this involves initial creation, scoring and adding it to the proper stack
* \param hypothesis hypothesis to be expanded upon
* \param transOpt translation option (phrase translation)
* that is applied to create the new hypothesis
* \param expectedScore base score for early discarding
* (base hypothesis score plus future score estimation)
*/
void
SearchNormalBatch::
ExpandHypothesis(const Hypothesis &hypothesis,
const TranslationOption &transOpt, float expectedScore)
{
// Check if the number of partial hypotheses exceeds the batch size.
if (m_partial_hypos.size() >= m_batch_size) {
EvalAndMergePartialHypos();
}
const StaticData &staticData = StaticData::Instance();
SentenceStats &stats = m_manager.GetSentenceStats();
clock_t t=0; // used to track time for steps
Hypothesis *newHypo;
if (! staticData.UseEarlyDiscarding()) {
// simple build, no questions asked
IFVERBOSE(2) {
t = clock();
}
newHypo = hypothesis.CreateNext(transOpt);
IFVERBOSE(2) {
stats.AddTimeBuildHyp( clock()-t );
}
if (newHypo==NULL) return;
//newHypo->Evaluate(m_transOptColl.GetFutureScore());
// Issue DLM requests for new hypothesis and put into the list of
// partial hypotheses.
std::map<int, LanguageModel*>::iterator dlm_iter;
for (dlm_iter = m_dlm_ffs.begin();
dlm_iter != m_dlm_ffs.end();
++dlm_iter) {
const FFState* input_state = newHypo->GetPrevHypo() ? newHypo->GetPrevHypo()->GetFFState((*dlm_iter).first) : NULL;
(*dlm_iter).second->IssueRequestsFor(*newHypo, input_state);
}
m_partial_hypos.push_back(newHypo);
} else {
std::cerr << "can't use early discarding with batch decoding!" << std::endl;
abort();
}
}
void SearchNormalBatch::EvalAndMergePartialHypos()
{
std::vector<Hypothesis*>::iterator partial_hypo_iter;
for (partial_hypo_iter = m_partial_hypos.begin();
partial_hypo_iter != m_partial_hypos.end();
++partial_hypo_iter) {
Hypothesis* hypo = *partial_hypo_iter;
// Evaluate with other ffs.
std::map<int, StatefulFeatureFunction*>::iterator sfff_iter;
for (sfff_iter = m_stateful_ffs.begin();
sfff_iter != m_stateful_ffs.end();
++sfff_iter) {
const StatefulFeatureFunction &ff = *(sfff_iter->second);
int state_idx = sfff_iter->first;
hypo->EvaluateWith(ff, state_idx);
}
std::vector<const StatelessFeatureFunction*>::iterator slff_iter;
for (slff_iter = m_stateless_ffs.begin();
slff_iter != m_stateless_ffs.end();
++slff_iter) {
hypo->EvaluateWith(**slff_iter);
}
}
// Wait for all requests from the distributed LM to come back.
std::map<int, LanguageModel*>::iterator dlm_iter;
for (dlm_iter = m_dlm_ffs.begin();
dlm_iter != m_dlm_ffs.end();
++dlm_iter) {
(*dlm_iter).second->sync();
}
// Incorporate the DLM scores into all hypotheses and put into their
// stacks.
for (partial_hypo_iter = m_partial_hypos.begin();
partial_hypo_iter != m_partial_hypos.end();
++partial_hypo_iter) {
Hypothesis* hypo = *partial_hypo_iter;
// Calculate DLM scores.
std::map<int, LanguageModel*>::iterator dlm_iter;
for (dlm_iter = m_dlm_ffs.begin();
dlm_iter != m_dlm_ffs.end();
++dlm_iter) {
LanguageModel &lm = *(dlm_iter->second);
hypo->EvaluateWith(lm, (*dlm_iter).first);
}
// Put completed hypothesis onto its stack.
size_t wordsTranslated = hypo->GetWordsBitmap().GetNumWordsCovered();
m_hypoStackColl[wordsTranslated]->AddPrune(hypo);
}
m_partial_hypos.clear();
std::vector < HypothesisStack* >::iterator stack_iter;
HypothesisStackNormal* stack;
for (stack_iter = m_hypoStackColl.begin();
stack_iter != m_hypoStackColl.end();
++stack_iter) {
stack = static_cast<HypothesisStackNormal*>(*stack_iter);
stack->PruneToSize(m_max_stack_size);
}
}
}