mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-01 00:12:27 +03:00
634 lines
21 KiB
C++
634 lines
21 KiB
C++
// $Id$
|
|
|
|
/***********************************************************************
|
|
Moses - factored phrase-based language decoder
|
|
Copyright (c) 2006 University of Edinburgh
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
* Neither the name of the University of Edinburgh nor the names of its contributors
|
|
may be used to endorse or promote products derived from this software
|
|
without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
|
|
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
// example file on how to use moses library
|
|
|
|
#include <iostream>
|
|
#include <stack>
|
|
#include <boost/algorithm/string.hpp>
|
|
|
|
#include "moses/TypeDef.h"
|
|
#include "moses/Util.h"
|
|
#include "moses/Hypothesis.h"
|
|
#include "moses/WordsRange.h"
|
|
#include "moses/TrellisPathList.h"
|
|
#include "moses/StaticData.h"
|
|
#include "moses/DummyScoreProducers.h"
|
|
#include "moses/FeatureVector.h"
|
|
#include "moses/InputFileStream.h"
|
|
#include "IOWrapper.h"
|
|
|
|
using namespace std;
|
|
using namespace Moses;
|
|
|
|
namespace MosesCmd
|
|
{
|
|
|
|
IOWrapper::IOWrapper(
|
|
const vector<FactorType> &inputFactorOrder
|
|
, const vector<FactorType> &outputFactorOrder
|
|
, const FactorMask &inputFactorUsed
|
|
, size_t nBestSize
|
|
, const string &nBestFilePath)
|
|
:m_inputFactorOrder(inputFactorOrder)
|
|
,m_outputFactorOrder(outputFactorOrder)
|
|
,m_inputFactorUsed(inputFactorUsed)
|
|
,m_inputFile(NULL)
|
|
,m_inputStream(&std::cin)
|
|
,m_nBestStream(NULL)
|
|
,m_outputWordGraphStream(NULL)
|
|
,m_outputSearchGraphStream(NULL)
|
|
,m_detailedTranslationReportingStream(NULL)
|
|
,m_alignmentOutputStream(NULL)
|
|
{
|
|
Initialization(inputFactorOrder, outputFactorOrder
|
|
, inputFactorUsed
|
|
, nBestSize, nBestFilePath);
|
|
}
|
|
|
|
IOWrapper::IOWrapper(const std::vector<FactorType> &inputFactorOrder
|
|
, const std::vector<FactorType> &outputFactorOrder
|
|
, const FactorMask &inputFactorUsed
|
|
, size_t nBestSize
|
|
, const std::string &nBestFilePath
|
|
, const std::string &inputFilePath)
|
|
:m_inputFactorOrder(inputFactorOrder)
|
|
,m_outputFactorOrder(outputFactorOrder)
|
|
,m_inputFactorUsed(inputFactorUsed)
|
|
,m_inputFilePath(inputFilePath)
|
|
,m_inputFile(new InputFileStream(inputFilePath))
|
|
,m_nBestStream(NULL)
|
|
,m_outputWordGraphStream(NULL)
|
|
,m_outputSearchGraphStream(NULL)
|
|
,m_detailedTranslationReportingStream(NULL)
|
|
,m_alignmentOutputStream(NULL)
|
|
{
|
|
Initialization(inputFactorOrder, outputFactorOrder
|
|
, inputFactorUsed
|
|
, nBestSize, nBestFilePath);
|
|
|
|
m_inputStream = m_inputFile;
|
|
}
|
|
|
|
IOWrapper::~IOWrapper()
|
|
{
|
|
if (m_inputFile != NULL)
|
|
delete m_inputFile;
|
|
if (m_nBestStream != NULL && !m_surpressSingleBestOutput) {
|
|
// outputting n-best to file, rather than stdout. need to close file and delete obj
|
|
delete m_nBestStream;
|
|
}
|
|
if (m_outputWordGraphStream != NULL) {
|
|
delete m_outputWordGraphStream;
|
|
}
|
|
if (m_outputSearchGraphStream != NULL) {
|
|
delete m_outputSearchGraphStream;
|
|
}
|
|
delete m_detailedTranslationReportingStream;
|
|
delete m_alignmentOutputStream;
|
|
}
|
|
|
|
void IOWrapper::Initialization(const std::vector<FactorType> &/*inputFactorOrder*/
|
|
, const std::vector<FactorType> &/*outputFactorOrder*/
|
|
, const FactorMask &/*inputFactorUsed*/
|
|
, size_t nBestSize
|
|
, const std::string &nBestFilePath)
|
|
{
|
|
const StaticData &staticData = StaticData::Instance();
|
|
|
|
// n-best
|
|
m_surpressSingleBestOutput = false;
|
|
|
|
if (nBestSize > 0) {
|
|
if (nBestFilePath == "-" || nBestFilePath == "/dev/stdout") {
|
|
m_nBestStream = &std::cout;
|
|
m_surpressSingleBestOutput = true;
|
|
} else {
|
|
std::ofstream *file = new std::ofstream;
|
|
m_nBestStream = file;
|
|
file->open(nBestFilePath.c_str());
|
|
}
|
|
}
|
|
|
|
// wordgraph output
|
|
if (staticData.GetOutputWordGraph()) {
|
|
string fileName = staticData.GetParam("output-word-graph")[0];
|
|
std::ofstream *file = new std::ofstream;
|
|
m_outputWordGraphStream = file;
|
|
file->open(fileName.c_str());
|
|
}
|
|
|
|
|
|
// search graph output
|
|
if (staticData.GetOutputSearchGraph()) {
|
|
string fileName;
|
|
if (staticData.GetOutputSearchGraphExtended())
|
|
fileName = staticData.GetParam("output-search-graph-extended")[0];
|
|
else
|
|
fileName = staticData.GetParam("output-search-graph")[0];
|
|
std::ofstream *file = new std::ofstream;
|
|
m_outputSearchGraphStream = file;
|
|
file->open(fileName.c_str());
|
|
}
|
|
|
|
// detailed translation reporting
|
|
if (staticData.IsDetailedTranslationReportingEnabled()) {
|
|
const std::string &path = staticData.GetDetailedTranslationReportingFilePath();
|
|
m_detailedTranslationReportingStream = new std::ofstream(path.c_str());
|
|
CHECK(m_detailedTranslationReportingStream->good());
|
|
}
|
|
|
|
// sentence alignment output
|
|
if (! staticData.GetAlignmentOutputFile().empty()) {
|
|
m_alignmentOutputStream = new ofstream(staticData.GetAlignmentOutputFile().c_str());
|
|
CHECK(m_alignmentOutputStream->good());
|
|
}
|
|
|
|
}
|
|
|
|
InputType*IOWrapper::GetInput(InputType* inputType)
|
|
{
|
|
if(inputType->Read(*m_inputStream, m_inputFactorOrder)) {
|
|
if (long x = inputType->GetTranslationId()) {
|
|
if (x>=m_translationId) m_translationId = x+1;
|
|
} else inputType->SetTranslationId(m_translationId++);
|
|
|
|
return inputType;
|
|
} else {
|
|
delete inputType;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/***
|
|
* print surface factor only for the given phrase
|
|
*/
|
|
void OutputSurface(std::ostream &out, const Hypothesis &edge, const std::vector<FactorType> &outputFactorOrder,
|
|
bool reportSegmentation, bool reportAllFactors)
|
|
{
|
|
CHECK(outputFactorOrder.size() > 0);
|
|
const Phrase& phrase = edge.GetCurrTargetPhrase();
|
|
if (reportAllFactors == true) {
|
|
out << phrase;
|
|
} else {
|
|
size_t size = phrase.GetSize();
|
|
for (size_t pos = 0 ; pos < size ; pos++) {
|
|
const Factor *factor = phrase.GetFactor(pos, outputFactorOrder[0]);
|
|
out << *factor;
|
|
CHECK(factor);
|
|
|
|
for (size_t i = 1 ; i < outputFactorOrder.size() ; i++) {
|
|
const Factor *factor = phrase.GetFactor(pos, outputFactorOrder[i]);
|
|
CHECK(factor);
|
|
|
|
out << "|" << *factor;
|
|
}
|
|
out << " ";
|
|
}
|
|
}
|
|
|
|
// trace option "-t"
|
|
if (reportSegmentation == true && phrase.GetSize() > 0) {
|
|
out << "|" << edge.GetCurrSourceWordsRange().GetStartPos()
|
|
<< "-" << edge.GetCurrSourceWordsRange().GetEndPos() << "| ";
|
|
}
|
|
}
|
|
|
|
void OutputBestSurface(std::ostream &out, const Hypothesis *hypo, const std::vector<FactorType> &outputFactorOrder,
|
|
bool reportSegmentation, bool reportAllFactors)
|
|
{
|
|
if (hypo != NULL) {
|
|
// recursively retrace this best path through the lattice, starting from the end of the hypothesis sentence
|
|
OutputBestSurface(out, hypo->GetPrevHypo(), outputFactorOrder, reportSegmentation, reportAllFactors);
|
|
OutputSurface(out, *hypo, outputFactorOrder, reportSegmentation, reportAllFactors);
|
|
}
|
|
}
|
|
|
|
void OutputAlignment(ostream &out, const AlignmentInfo &ai, size_t sourceOffset, size_t targetOffset)
|
|
{
|
|
typedef std::vector< const std::pair<size_t,size_t>* > AlignVec;
|
|
AlignVec alignments = ai.GetSortedAlignments();
|
|
|
|
AlignVec::const_iterator it;
|
|
for (it = alignments.begin(); it != alignments.end(); ++it) {
|
|
const std::pair<size_t,size_t> &alignment = **it;
|
|
out << alignment.first + sourceOffset << "-" << alignment.second + targetOffset << " ";
|
|
}
|
|
|
|
}
|
|
|
|
void OutputAlignment(ostream &out, const vector<const Hypothesis *> &edges)
|
|
{
|
|
size_t targetOffset = 0;
|
|
|
|
for (int currEdge = (int)edges.size() - 1 ; currEdge >= 0 ; currEdge--) {
|
|
const Hypothesis &edge = *edges[currEdge];
|
|
const TargetPhrase &tp = edge.GetCurrTargetPhrase();
|
|
size_t sourceOffset = edge.GetCurrSourceWordsRange().GetStartPos();
|
|
|
|
OutputAlignment(out, tp.GetAlignTerm(), sourceOffset, targetOffset);
|
|
|
|
targetOffset += tp.GetSize();
|
|
}
|
|
}
|
|
|
|
void OutputAlignment(std::ostream &out, const Moses::Hypothesis *hypo)
|
|
{
|
|
std::vector<const Hypothesis *> edges;
|
|
const Hypothesis *currentHypo = hypo;
|
|
while (currentHypo) {
|
|
edges.push_back(currentHypo);
|
|
currentHypo = currentHypo->GetPrevHypo();
|
|
}
|
|
|
|
OutputAlignment(out, edges);
|
|
|
|
}
|
|
|
|
void OutputAlignment(OutputCollector* collector, size_t lineNo , const vector<const Hypothesis *> &edges)
|
|
{
|
|
ostringstream out;
|
|
OutputAlignment(out, edges);
|
|
out << std::endl;
|
|
|
|
collector->Write(lineNo,out.str());
|
|
}
|
|
|
|
void OutputAlignment(OutputCollector* collector, size_t lineNo , const Hypothesis *hypo)
|
|
{
|
|
if (collector) {
|
|
std::vector<const Hypothesis *> edges;
|
|
const Hypothesis *currentHypo = hypo;
|
|
while (currentHypo) {
|
|
edges.push_back(currentHypo);
|
|
currentHypo = currentHypo->GetPrevHypo();
|
|
}
|
|
|
|
OutputAlignment(collector,lineNo, edges);
|
|
}
|
|
}
|
|
|
|
void OutputAlignment(OutputCollector* collector, size_t lineNo , const TrellisPath &path)
|
|
{
|
|
if (collector) {
|
|
OutputAlignment(collector,lineNo, path.GetEdges());
|
|
}
|
|
}
|
|
|
|
void OutputBestHypo(const Moses::TrellisPath &path, long /*translationId*/, bool reportSegmentation, bool reportAllFactors, std::ostream &out)
|
|
{
|
|
const std::vector<const Hypothesis *> &edges = path.GetEdges();
|
|
|
|
for (int currEdge = (int)edges.size() - 1 ; currEdge >= 0 ; currEdge--) {
|
|
const Hypothesis &edge = *edges[currEdge];
|
|
OutputSurface(out, edge, StaticData::Instance().GetOutputFactorOrder(), reportSegmentation, reportAllFactors);
|
|
}
|
|
out << endl;
|
|
}
|
|
|
|
void IOWrapper::Backtrack(const Hypothesis *hypo)
|
|
{
|
|
|
|
if (hypo->GetPrevHypo() != NULL) {
|
|
VERBOSE(3,hypo->GetId() << " <= ");
|
|
Backtrack(hypo->GetPrevHypo());
|
|
}
|
|
}
|
|
|
|
void OutputBestHypo(const std::vector<Word>& mbrBestHypo, long /*translationId*/, bool /*reportSegmentation*/, bool /*reportAllFactors*/, ostream& out)
|
|
{
|
|
|
|
for (size_t i = 0 ; i < mbrBestHypo.size() ; i++) {
|
|
const Factor *factor = mbrBestHypo[i].GetFactor(StaticData::Instance().GetOutputFactorOrder()[0]);
|
|
CHECK(factor);
|
|
if (i>0) out << " " << *factor;
|
|
else out << *factor;
|
|
}
|
|
out << endl;
|
|
}
|
|
|
|
|
|
void OutputInput(std::vector<const Phrase*>& map, const Hypothesis* hypo)
|
|
{
|
|
if (hypo->GetPrevHypo()) {
|
|
OutputInput(map, hypo->GetPrevHypo());
|
|
map[hypo->GetCurrSourceWordsRange().GetStartPos()] = hypo->GetSourcePhrase();
|
|
}
|
|
}
|
|
|
|
void OutputInput(std::ostream& os, const Hypothesis* hypo)
|
|
{
|
|
size_t len = hypo->GetInput().GetSize();
|
|
std::vector<const Phrase*> inp_phrases(len, 0);
|
|
OutputInput(inp_phrases, hypo);
|
|
for (size_t i=0; i<len; ++i)
|
|
if (inp_phrases[i]) os << *inp_phrases[i];
|
|
}
|
|
|
|
void IOWrapper::OutputBestHypo(const Hypothesis *hypo, long /*translationId*/, bool reportSegmentation, bool reportAllFactors)
|
|
{
|
|
if (hypo != NULL) {
|
|
VERBOSE(1,"BEST TRANSLATION: " << *hypo << endl);
|
|
VERBOSE(3,"Best path: ");
|
|
Backtrack(hypo);
|
|
VERBOSE(3,"0" << std::endl);
|
|
if (!m_surpressSingleBestOutput) {
|
|
if (StaticData::Instance().IsPathRecoveryEnabled()) {
|
|
OutputInput(cout, hypo);
|
|
cout << "||| ";
|
|
}
|
|
OutputBestSurface(cout, hypo, m_outputFactorOrder, reportSegmentation, reportAllFactors);
|
|
cout << endl;
|
|
}
|
|
} else {
|
|
VERBOSE(1, "NO BEST TRANSLATION" << endl);
|
|
if (!m_surpressSingleBestOutput) {
|
|
cout << endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
void OutputNBest(std::ostream& out, const Moses::TrellisPathList &nBestList, const std::vector<Moses::FactorType>& outputFactorOrder, const TranslationSystem* system, long translationId, bool reportSegmentation)
|
|
{
|
|
const StaticData &staticData = StaticData::Instance();
|
|
bool labeledOutput = staticData.IsLabeledNBestList();
|
|
bool reportAllFactors = staticData.GetReportAllFactorsNBest();
|
|
bool includeSegmentation = staticData.NBestIncludesSegmentation();
|
|
bool includeWordAlignment = staticData.PrintAlignmentInfoInNbest();
|
|
|
|
TrellisPathList::const_iterator iter;
|
|
for (iter = nBestList.begin() ; iter != nBestList.end() ; ++iter) {
|
|
const TrellisPath &path = **iter;
|
|
const std::vector<const Hypothesis *> &edges = path.GetEdges();
|
|
|
|
// print the surface factor of the translation
|
|
out << translationId << " ||| ";
|
|
for (int currEdge = (int)edges.size() - 1 ; currEdge >= 0 ; currEdge--) {
|
|
const Hypothesis &edge = *edges[currEdge];
|
|
OutputSurface(out, edge, outputFactorOrder, reportSegmentation, reportAllFactors);
|
|
}
|
|
out << " |||";
|
|
|
|
// print scores with feature names
|
|
OutputAllFeatureScores( out, system, path );
|
|
string lastName;
|
|
|
|
// translation components
|
|
const vector<PhraseDictionaryFeature*>& pds = system->GetPhraseDictionaries();
|
|
if (pds.size() > 0) {
|
|
|
|
for( size_t i=0; i<pds.size(); i++ ) {
|
|
size_t pd_numinputscore = pds[i]->GetNumInputScores();
|
|
vector<float> scores = path.GetScoreBreakdown().GetScoresForProducer( pds[i] );
|
|
for (size_t j = 0; j<scores.size(); ++j){
|
|
|
|
if (labeledOutput && (i == 0) ){
|
|
if ((j == 0) || (j == pd_numinputscore)){
|
|
lastName = pds[i]->GetScoreProducerWeightShortName(j);
|
|
out << " " << lastName << ":";
|
|
}
|
|
}
|
|
out << " " << scores[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
// generation
|
|
const vector<GenerationDictionary*>& gds = system->GetGenerationDictionaries();
|
|
if (gds.size() > 0) {
|
|
|
|
for( size_t i=0; i<gds.size(); i++ ) {
|
|
size_t pd_numinputscore = gds[i]->GetNumInputScores();
|
|
vector<float> scores = path.GetScoreBreakdown().GetScoresForProducer( gds[i] );
|
|
for (size_t j = 0; j<scores.size(); ++j){
|
|
|
|
if (labeledOutput && (i == 0) ){
|
|
if ((j == 0) || (j == pd_numinputscore)){
|
|
lastName = gds[i]->GetScoreProducerWeightShortName(j);
|
|
out << " " << lastName << ":";
|
|
}
|
|
}
|
|
out << " " << scores[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
// total
|
|
out << " ||| " << path.GetTotalScore();
|
|
|
|
//phrase-to-phrase segmentation
|
|
if (includeSegmentation) {
|
|
out << " |||";
|
|
for (int currEdge = (int)edges.size() - 2 ; currEdge >= 0 ; currEdge--) {
|
|
const Hypothesis &edge = *edges[currEdge];
|
|
const WordsRange &sourceRange = edge.GetCurrSourceWordsRange();
|
|
WordsRange targetRange = path.GetTargetWordsRange(edge);
|
|
out << " " << sourceRange.GetStartPos();
|
|
if (sourceRange.GetStartPos() < sourceRange.GetEndPos()) {
|
|
out << "-" << sourceRange.GetEndPos();
|
|
}
|
|
out<< "=" << targetRange.GetStartPos();
|
|
if (targetRange.GetStartPos() < targetRange.GetEndPos()) {
|
|
out<< "-" << targetRange.GetEndPos();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (includeWordAlignment) {
|
|
out << " ||| ";
|
|
for (int currEdge = (int)edges.size() - 2 ; currEdge >= 0 ; currEdge--) {
|
|
const Hypothesis &edge = *edges[currEdge];
|
|
const WordsRange &sourceRange = edge.GetCurrSourceWordsRange();
|
|
WordsRange targetRange = path.GetTargetWordsRange(edge);
|
|
const int sourceOffset = sourceRange.GetStartPos();
|
|
const int targetOffset = targetRange.GetStartPos();
|
|
const AlignmentInfo &ai = edge.GetCurrTargetPhrase().GetAlignTerm();
|
|
|
|
OutputAlignment(out, ai, sourceOffset, targetOffset);
|
|
|
|
}
|
|
}
|
|
|
|
if (StaticData::Instance().IsPathRecoveryEnabled()) {
|
|
out << "|||";
|
|
OutputInput(out, edges[0]);
|
|
}
|
|
|
|
out << endl;
|
|
}
|
|
|
|
out << std::flush;
|
|
}
|
|
|
|
void OutputAllFeatureScores( std::ostream& out, const TranslationSystem* system, const TrellisPath &path )
|
|
{
|
|
std::string lastName = "";
|
|
const vector<const StatefulFeatureFunction*>& sff = system->GetStatefulFeatureFunctions();
|
|
for( size_t i=0; i<sff.size(); i++ )
|
|
if (sff[i]->GetScoreProducerWeightShortName() != "bl")
|
|
OutputFeatureScores( out, path, sff[i], lastName );
|
|
|
|
const vector<const StatelessFeatureFunction*>& slf = system->GetStatelessFeatureFunctions();
|
|
for( size_t i=0; i<slf.size(); i++ )
|
|
if (slf[i]->GetScoreProducerWeightShortName() != "u" &&
|
|
slf[i]->GetScoreProducerWeightShortName() != "tm" &&
|
|
slf[i]->GetScoreProducerWeightShortName() != "I" &&
|
|
slf[i]->GetScoreProducerWeightShortName() != "g")
|
|
OutputFeatureScores( out, path, slf[i], lastName );
|
|
}
|
|
|
|
void OutputFeatureScores( std::ostream& out, const TrellisPath &path, const FeatureFunction *ff, std::string &lastName )
|
|
{
|
|
const StaticData &staticData = StaticData::Instance();
|
|
bool labeledOutput = staticData.IsLabeledNBestList();
|
|
|
|
// regular features (not sparse)
|
|
if (ff->GetNumScoreComponents() != ScoreProducer::unlimited) {
|
|
if( labeledOutput && lastName != ff->GetScoreProducerWeightShortName() ) {
|
|
lastName = ff->GetScoreProducerWeightShortName();
|
|
out << " " << lastName << ":";
|
|
}
|
|
vector<float> scores = path.GetScoreBreakdown().GetScoresForProducer( ff );
|
|
for (size_t j = 0; j<scores.size(); ++j) {
|
|
out << " " << scores[j];
|
|
}
|
|
}
|
|
|
|
// sparse features
|
|
else {
|
|
const FVector scores = path.GetScoreBreakdown().GetVectorForProducer( ff );
|
|
|
|
// report weighted aggregate
|
|
if (! ff->GetSparseFeatureReporting()) {
|
|
const FVector &weights = staticData.GetAllWeights().GetScoresVector();
|
|
if (labeledOutput && !boost::contains(ff->GetScoreProducerDescription(), ":"))
|
|
out << " " << ff->GetScoreProducerWeightShortName() << ":";
|
|
out << " " << scores.inner_product(weights);
|
|
}
|
|
|
|
// report each feature
|
|
else {
|
|
for(FVector::FNVmap::const_iterator i = scores.cbegin(); i != scores.cend(); i++)
|
|
out << " " << i->first << ": " << i->second;
|
|
/* if (i->second != 0) { // do not report zero-valued features
|
|
float weight = staticData.GetSparseWeight(i->first);
|
|
if (weight != 0)
|
|
out << " " << i->first << "=" << weight;
|
|
}*/
|
|
}
|
|
}
|
|
}
|
|
|
|
void OutputLatticeMBRNBest(std::ostream& out, const vector<LatticeMBRSolution>& solutions,long translationId)
|
|
{
|
|
for (vector<LatticeMBRSolution>::const_iterator si = solutions.begin(); si != solutions.end(); ++si) {
|
|
out << translationId;
|
|
out << " |||";
|
|
const vector<Word> mbrHypo = si->GetWords();
|
|
for (size_t i = 0 ; i < mbrHypo.size() ; i++) {
|
|
const Factor *factor = mbrHypo[i].GetFactor(StaticData::Instance().GetOutputFactorOrder()[0]);
|
|
if (i>0) out << " " << *factor;
|
|
else out << *factor;
|
|
}
|
|
out << " |||";
|
|
out << " map: " << si->GetMapScore();
|
|
out << " w: " << mbrHypo.size();
|
|
const vector<float>& ngramScores = si->GetNgramScores();
|
|
for (size_t i = 0; i < ngramScores.size(); ++i) {
|
|
out << " " << ngramScores[i];
|
|
}
|
|
out << " ||| " << si->GetScore();
|
|
|
|
out << endl;
|
|
}
|
|
}
|
|
|
|
|
|
void IOWrapper::OutputLatticeMBRNBestList(const vector<LatticeMBRSolution>& solutions,long translationId)
|
|
{
|
|
OutputLatticeMBRNBest(*m_nBestStream, solutions,translationId);
|
|
}
|
|
|
|
bool ReadInput(IOWrapper &ioWrapper, InputTypeEnum inputType, InputType*& source)
|
|
{
|
|
delete source;
|
|
switch(inputType) {
|
|
case SentenceInput:
|
|
source = ioWrapper.GetInput(new Sentence);
|
|
break;
|
|
case ConfusionNetworkInput:
|
|
source = ioWrapper.GetInput(new ConfusionNet);
|
|
break;
|
|
case WordLatticeInput:
|
|
source = ioWrapper.GetInput(new WordLattice);
|
|
break;
|
|
default:
|
|
TRACE_ERR("Unknown input type: " << inputType << "\n");
|
|
}
|
|
return (source ? true : false);
|
|
}
|
|
|
|
|
|
|
|
IOWrapper *GetIOWrapper(const StaticData &staticData)
|
|
{
|
|
IOWrapper *ioWrapper;
|
|
const std::vector<FactorType> &inputFactorOrder = staticData.GetInputFactorOrder()
|
|
,&outputFactorOrder = staticData.GetOutputFactorOrder();
|
|
FactorMask inputFactorUsed(inputFactorOrder);
|
|
|
|
// io
|
|
if (staticData.GetParam("input-file").size() == 1) {
|
|
VERBOSE(2,"IO from File" << endl);
|
|
string filePath = staticData.GetParam("input-file")[0];
|
|
|
|
ioWrapper = new IOWrapper(inputFactorOrder, outputFactorOrder, inputFactorUsed
|
|
, staticData.GetNBestSize()
|
|
, staticData.GetNBestFilePath()
|
|
, filePath);
|
|
} else {
|
|
VERBOSE(1,"IO from STDOUT/STDIN" << endl);
|
|
ioWrapper = new IOWrapper(inputFactorOrder, outputFactorOrder, inputFactorUsed
|
|
, staticData.GetNBestSize()
|
|
, staticData.GetNBestFilePath());
|
|
}
|
|
ioWrapper->ResetTranslationId();
|
|
|
|
IFVERBOSE(1)
|
|
PrintUserTime("Created input-output object");
|
|
|
|
return ioWrapper;
|
|
}
|
|
|
|
}
|
|
|