mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-27 05:55:02 +03:00
124 lines
3.5 KiB
C++
124 lines
3.5 KiB
C++
#include "TargetBigramFeature.h"
|
|
#include "Phrase.h"
|
|
#include "TargetPhrase.h"
|
|
#include "Hypothesis.h"
|
|
#include "ScoreComponentCollection.h"
|
|
#include "util/string_piece_hash.hh"
|
|
|
|
using namespace std;
|
|
|
|
namespace Moses {
|
|
|
|
int TargetBigramState::Compare(const FFState& other) const {
|
|
const TargetBigramState& rhs = dynamic_cast<const TargetBigramState&>(other);
|
|
return Word::Compare(m_word,rhs.m_word);
|
|
}
|
|
|
|
TargetBigramFeature::TargetBigramFeature(const std::string &line)
|
|
:StatefulFeatureFunction("TargetBigramFeature", 0, line)
|
|
{
|
|
std::cerr << "Initializing target bigram feature.." << std::endl;
|
|
|
|
vector<string> tokens = Tokenize(line);
|
|
//CHECK(tokens[0] == m_description);
|
|
|
|
// set factor
|
|
m_factorType = Scan<FactorType>(tokens[1]);
|
|
|
|
FactorCollection& factorCollection = FactorCollection::Instance();
|
|
const Factor* bosFactor =
|
|
factorCollection.AddFactor(Output,m_factorType,BOS_);
|
|
m_bos.SetFactor(m_factorType,bosFactor);
|
|
|
|
const string &filePath = tokens[2];
|
|
Load(filePath);
|
|
|
|
}
|
|
|
|
bool TargetBigramFeature::Load(const std::string &filePath)
|
|
{
|
|
if (filePath == "*") return true; //allow all
|
|
ifstream inFile(filePath.c_str());
|
|
if (!inFile)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
std::string line;
|
|
m_vocab.insert(BOS_);
|
|
m_vocab.insert(BOS_);
|
|
while (getline(inFile, line)) {
|
|
m_vocab.insert(line);
|
|
}
|
|
|
|
inFile.close();
|
|
return true;
|
|
}
|
|
|
|
|
|
const FFState* TargetBigramFeature::EmptyHypothesisState(const InputType &/*input*/) const
|
|
{
|
|
return new TargetBigramState(m_bos);
|
|
}
|
|
|
|
FFState* TargetBigramFeature::Evaluate(const Hypothesis& cur_hypo,
|
|
const FFState* prev_state,
|
|
ScoreComponentCollection* accumulator) const
|
|
{
|
|
const TargetBigramState* tbState = dynamic_cast<const TargetBigramState*>(prev_state);
|
|
CHECK(tbState);
|
|
|
|
// current hypothesis target phrase
|
|
const Phrase& targetPhrase = cur_hypo.GetCurrTargetPhrase();
|
|
if (targetPhrase.GetSize() == 0) {
|
|
return new TargetBigramState(*tbState);
|
|
}
|
|
|
|
// extract all bigrams w1 w2 from current hypothesis
|
|
for (size_t i = 0; i < targetPhrase.GetSize(); ++i) {
|
|
const Factor* f1 = NULL;
|
|
if (i == 0) {
|
|
f1 = tbState->GetWord().GetFactor(m_factorType);
|
|
} else {
|
|
f1 = targetPhrase.GetWord(i-1).GetFactor(m_factorType);
|
|
}
|
|
const Factor* f2 = targetPhrase.GetWord(i).GetFactor(m_factorType);
|
|
const StringPiece w1 = f1->GetString();
|
|
const StringPiece w2 = f2->GetString();
|
|
|
|
// skip bigrams if they don't belong to a given restricted vocabulary
|
|
if (m_vocab.size() &&
|
|
(FindStringPiece(m_vocab, w1) == m_vocab.end() || FindStringPiece(m_vocab, w2) == m_vocab.end())) {
|
|
continue;
|
|
}
|
|
|
|
string name(w1.data(), w1.size());
|
|
name += ":";
|
|
name.append(w2.data(), w2.size());
|
|
accumulator->PlusEquals(this,name,1);
|
|
}
|
|
|
|
if (cur_hypo.GetWordsBitmap().IsComplete()) {
|
|
const StringPiece w1 = targetPhrase.GetWord(targetPhrase.GetSize()-1).GetFactor(m_factorType)->GetString();
|
|
const string& w2 = EOS_;
|
|
if (m_vocab.empty() || (FindStringPiece(m_vocab, w1) != m_vocab.end())) {
|
|
string name(w1.data(), w1.size());
|
|
name += ":";
|
|
name += w2;
|
|
accumulator->PlusEquals(this,name,1);
|
|
}
|
|
return NULL;
|
|
}
|
|
return new TargetBigramState(targetPhrase.GetWord(targetPhrase.GetSize()-1));
|
|
}
|
|
|
|
void TargetBigramFeature::Evaluate(const TargetPhrase &targetPhrase
|
|
, ScoreComponentCollection &scoreBreakdown
|
|
, ScoreComponentCollection &estimatedFutureScore) const
|
|
{
|
|
CHECK(false);
|
|
}
|
|
|
|
}
|
|
|