mosesdecoder/mert/Scorer.h
Tetsuo Kiso 29c16d252a Minimize using #include headers in headers.
Should use it in .cpp files.
2011-11-14 15:15:30 +09:00

187 lines
4.6 KiB
C++

#ifndef __SCORER_H__
#define __SCORER_H__
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>
#include "Types.h"
#include "ScoreData.h"
using namespace std;
enum ScorerRegularisationStrategy {REG_NONE, REG_AVERAGE, REG_MINIMUM};
class ScoreStats;
/**
* Superclass of all scorers and dummy implementation.
*
* In order to add a new scorer it should be sufficient to override the members
* prepareStats(), setReferenceFiles() and score() (or calculateScore()).
*/
class Scorer
{
private:
string _name;
public:
Scorer(const string& name, const string& config);
virtual ~Scorer() {}
/**
* Return the number of statistics needed for the computation of the score.
*/
virtual size_t NumberOfScores() const {
cerr << "Scorer: 0" << endl;
return 0;
}
/**
* Set the reference files. This must be called before prepareStats().
*/
virtual void setReferenceFiles(const vector<string>& referenceFiles) {
//do nothing
}
/**
* Process the given guessed text, corresponding to the given reference sindex
* and add the appropriate statistics to the entry.
*/
virtual void prepareStats(size_t sindex, const string& text, ScoreStats& entry)
{}
virtual void prepareStats(const string& sindex, const string& text, ScoreStats& entry) {
// cerr << sindex << endl;
this->prepareStats((size_t) atoi(sindex.c_str()), text, entry);
//cerr << text << std::endl;
}
/**
* Score using each of the candidate index, then go through the diffs
* applying each in turn, and calculating a new score each time.
*/
virtual void score(const candidates_t& candidates, const diffs_t& diffs,
statscores_t& scores) const {
//dummy impl
if (!_scoreData) {
throw runtime_error("score data not loaded");
}
scores.push_back(0);
for (size_t i = 0; i < diffs.size(); ++i) {
scores.push_back(0);
}
}
/**
* Calculate the score of the sentences corresponding to the list of candidate
* indices. Each index indicates the 1-best choice from the n-best list.
*/
float score(const candidates_t& candidates) const {
diffs_t diffs;
statscores_t scores;
score(candidates, diffs, scores);
return scores[0];
}
const string& getName() const {
return _name;
}
size_t getReferenceSize() const {
if (_scoreData) {
return _scoreData->size();
}
return 0;
}
/**
* Set the score data, prior to scoring.
*/
void setScoreData(ScoreData* data) {
_scoreData = data;
}
protected:
typedef map<string,int> encodings_t;
typedef map<string,int>::iterator encodings_it;
ScoreData* _scoreData;
encodings_t _encodings;
bool _preserveCase;
/**
* Get value of config variable. If not provided, return default.
*/
string getConfig(const string& key, const string& def="") const {
map<string,string>::const_iterator i = _config.find(key);
if (i == _config.end()) {
return def;
} else {
return i->second;
}
}
/**
* Tokenise line and encode.
* Note: We assume that all tokens are separated by single spaces.
*/
void encode(const string& line, vector<int>& encoded) {
//cerr << line << endl;
istringstream in (line);
string token;
while (in >> token) {
if (!_preserveCase) {
for (string::iterator i = token.begin(); i != token.end(); ++i) {
*i = tolower(*i);
}
}
encodings_it encoding = _encodings.find(token);
int encoded_token;
if (encoding == _encodings.end()) {
encoded_token = (int)_encodings.size();
_encodings[token] = encoded_token;
//cerr << encoded_token << "(n) ";
} else {
encoded_token = encoding->second;
//cerr << encoded_token << " ";
}
encoded.push_back(encoded_token);
}
//cerr << endl;
}
private:
map<string,string> _config;
};
/**
* Abstract base class for Scorers that work by adding statistics across all
* outout sentences, then apply some formula, e.g., BLEU, PER.
*/
class StatisticsBasedScorer : public Scorer
{
public:
StatisticsBasedScorer(const string& name, const string& config);
virtual ~StatisticsBasedScorer() {}
virtual void score(const candidates_t& candidates, const diffs_t& diffs,
statscores_t& scores) const;
protected:
/**
* Calculate the actual score.
*/
virtual statscore_t calculateScore(const vector<int>& totals) const = 0;
// regularisation
ScorerRegularisationStrategy _regularisationStrategy;
size_t _regularisationWindow;
};
#endif // __SCORER_H__