mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-27 05:55:02 +03:00
29c16d252a
Should use it in .cpp files.
187 lines
4.6 KiB
C++
187 lines
4.6 KiB
C++
#ifndef __SCORER_H__
|
|
#define __SCORER_H__
|
|
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "Types.h"
|
|
#include "ScoreData.h"
|
|
|
|
using namespace std;
|
|
|
|
enum ScorerRegularisationStrategy {REG_NONE, REG_AVERAGE, REG_MINIMUM};
|
|
|
|
class ScoreStats;
|
|
|
|
/**
|
|
* Superclass of all scorers and dummy implementation.
|
|
*
|
|
* In order to add a new scorer it should be sufficient to override the members
|
|
* prepareStats(), setReferenceFiles() and score() (or calculateScore()).
|
|
*/
|
|
class Scorer
|
|
{
|
|
private:
|
|
string _name;
|
|
|
|
public:
|
|
Scorer(const string& name, const string& config);
|
|
virtual ~Scorer() {}
|
|
|
|
/**
|
|
* Return the number of statistics needed for the computation of the score.
|
|
*/
|
|
virtual size_t NumberOfScores() const {
|
|
cerr << "Scorer: 0" << endl;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Set the reference files. This must be called before prepareStats().
|
|
*/
|
|
virtual void setReferenceFiles(const vector<string>& referenceFiles) {
|
|
//do nothing
|
|
}
|
|
|
|
/**
|
|
* Process the given guessed text, corresponding to the given reference sindex
|
|
* and add the appropriate statistics to the entry.
|
|
*/
|
|
virtual void prepareStats(size_t sindex, const string& text, ScoreStats& entry)
|
|
{}
|
|
|
|
virtual void prepareStats(const string& sindex, const string& text, ScoreStats& entry) {
|
|
|
|
// cerr << sindex << endl;
|
|
this->prepareStats((size_t) atoi(sindex.c_str()), text, entry);
|
|
//cerr << text << std::endl;
|
|
}
|
|
|
|
/**
|
|
* Score using each of the candidate index, then go through the diffs
|
|
* applying each in turn, and calculating a new score each time.
|
|
*/
|
|
virtual void score(const candidates_t& candidates, const diffs_t& diffs,
|
|
statscores_t& scores) const {
|
|
//dummy impl
|
|
if (!_scoreData) {
|
|
throw runtime_error("score data not loaded");
|
|
}
|
|
scores.push_back(0);
|
|
for (size_t i = 0; i < diffs.size(); ++i) {
|
|
scores.push_back(0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate the score of the sentences corresponding to the list of candidate
|
|
* indices. Each index indicates the 1-best choice from the n-best list.
|
|
*/
|
|
float score(const candidates_t& candidates) const {
|
|
diffs_t diffs;
|
|
statscores_t scores;
|
|
score(candidates, diffs, scores);
|
|
return scores[0];
|
|
}
|
|
|
|
const string& getName() const {
|
|
return _name;
|
|
}
|
|
|
|
size_t getReferenceSize() const {
|
|
if (_scoreData) {
|
|
return _scoreData->size();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Set the score data, prior to scoring.
|
|
*/
|
|
void setScoreData(ScoreData* data) {
|
|
_scoreData = data;
|
|
}
|
|
|
|
protected:
|
|
typedef map<string,int> encodings_t;
|
|
typedef map<string,int>::iterator encodings_it;
|
|
|
|
ScoreData* _scoreData;
|
|
encodings_t _encodings;
|
|
|
|
bool _preserveCase;
|
|
|
|
/**
|
|
* Get value of config variable. If not provided, return default.
|
|
*/
|
|
string getConfig(const string& key, const string& def="") const {
|
|
map<string,string>::const_iterator i = _config.find(key);
|
|
if (i == _config.end()) {
|
|
return def;
|
|
} else {
|
|
return i->second;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Tokenise line and encode.
|
|
* Note: We assume that all tokens are separated by single spaces.
|
|
*/
|
|
void encode(const string& line, vector<int>& encoded) {
|
|
//cerr << line << endl;
|
|
istringstream in (line);
|
|
string token;
|
|
while (in >> token) {
|
|
if (!_preserveCase) {
|
|
for (string::iterator i = token.begin(); i != token.end(); ++i) {
|
|
*i = tolower(*i);
|
|
}
|
|
}
|
|
encodings_it encoding = _encodings.find(token);
|
|
int encoded_token;
|
|
if (encoding == _encodings.end()) {
|
|
encoded_token = (int)_encodings.size();
|
|
_encodings[token] = encoded_token;
|
|
//cerr << encoded_token << "(n) ";
|
|
} else {
|
|
encoded_token = encoding->second;
|
|
//cerr << encoded_token << " ";
|
|
}
|
|
encoded.push_back(encoded_token);
|
|
}
|
|
//cerr << endl;
|
|
}
|
|
|
|
private:
|
|
map<string,string> _config;
|
|
};
|
|
|
|
|
|
/**
|
|
* Abstract base class for Scorers that work by adding statistics across all
|
|
* outout sentences, then apply some formula, e.g., BLEU, PER.
|
|
*/
|
|
class StatisticsBasedScorer : public Scorer
|
|
{
|
|
public:
|
|
StatisticsBasedScorer(const string& name, const string& config);
|
|
virtual ~StatisticsBasedScorer() {}
|
|
virtual void score(const candidates_t& candidates, const diffs_t& diffs,
|
|
statscores_t& scores) const;
|
|
|
|
protected:
|
|
/**
|
|
* Calculate the actual score.
|
|
*/
|
|
virtual statscore_t calculateScore(const vector<int>& totals) const = 0;
|
|
|
|
// regularisation
|
|
ScorerRegularisationStrategy _regularisationStrategy;
|
|
size_t _regularisationWindow;
|
|
};
|
|
|
|
#endif // __SCORER_H__
|