megaparsec/Text/Parsec/Perm.hs

131 lines
4.3 KiB
Haskell
Raw Normal View History

2008-01-13 20:53:15 +03:00
-----------------------------------------------------------------------------
-- |
-- Module : Text.Parsec.Perm
-- Copyright : (c) Daan Leijen 1999-2001, (c) Paolo Martini 2007
-- License : BSD-style (see the file libraries/parsec/LICENSE)
--
-- Maintainer : paolo@nemail.it
-- Stability : provisional
-- Portability : non-portable (uses existentially quantified data constructors)
--
-- This module implements permutation parsers. The algorithm used
-- is fairly complex since we push the type system to its limits :-)
-- The algorithm is described in:
--
-- /Parsing Permutation Phrases,/
-- by Arthur Baars, Andres Loh and Doaitse Swierstra.
-- Published as a functional pearl at the Haskell Workshop 2001.
--
-----------------------------------------------------------------------------
{-# LANGUAGE ExistentialQuantification #-}
module Text.Parsec.Perm
( PermParser -- abstract
, permute
, (<||>), (<$$>)
, (<|?>), (<$?>)
) where
import Text.Parsec
import Text.Parsec.String
import Control.Monad.Identity
{---------------------------------------------------------------
---------------------------------------------------------------}
infixl 1 <||>, <|?>
infixl 2 <$$>, <$?>
{---------------------------------------------------------------
test -- parse a permutation of
* an optional string of 'a's
* a required 'b'
* an optional 'c'
---------------------------------------------------------------}
test input
= parse (do{ x <- ptest; eof; return x }) "" input
ptest :: Parser (String,Char,Char)
ptest
= permute $
(,,) <$?> ("",many1 (char 'a'))
<||> char 'b'
<|?> ('_',char 'c')
{---------------------------------------------------------------
Building a permutation parser
---------------------------------------------------------------}
(<||>) :: (Stream s Identity tok) => StreamPermParser s tok st (a -> b) -> Parsec s st a -> StreamPermParser s tok st b
(<||>) perm p = add perm p
(<$$>) :: (Stream s Identity tok) => (a -> b) -> Parsec s st a -> StreamPermParser s tok st b
(<$$>) f p = newperm f <||> p
(<|?>) :: (Stream s Identity tok) => StreamPermParser s tok st (a -> b) -> (a, Parsec s st a) -> StreamPermParser s tok st b
(<|?>) perm (x,p) = addopt perm x p
(<$?>) :: (Stream s Identity tok) => (a -> b) -> (a, Parsec s st a) -> StreamPermParser s tok st b
(<$?>) f (x,p) = newperm f <|?> (x,p)
{---------------------------------------------------------------
The permutation tree
---------------------------------------------------------------}
type PermParser tok st a = StreamPermParser String tok st a
data StreamPermParser s tok st a = Perm (Maybe a) [StreamBranch s tok st a]
type Branch tok st a = StreamBranch String tok st a
data StreamBranch s tok st a = forall b. Branch (StreamPermParser s tok st (b -> a)) (Parsec s st b)
-- data Branch tok st a = forall b. Branch (PermParser tok st (b -> a)) (GenParser tok st b)
-- transform a permutation tree into a normal parser
permute :: (Stream s Identity tok) => StreamPermParser s tok st a -> Parsec s st a
permute (Perm def xs)
= choice (map branch xs ++ empty)
where
empty
= case def of
Nothing -> []
Just x -> [return x]
branch (Branch perm p)
= do{ x <- p
; f <- permute perm
; return (f x)
}
-- build permutation trees
newperm :: (Stream s Identity tok) => (a -> b) -> StreamPermParser s tok st (a -> b)
newperm f
= Perm (Just f) []
add :: (Stream s Identity tok) => StreamPermParser s tok st (a -> b) -> Parsec s st a -> StreamPermParser s tok st b
add perm@(Perm mf fs) p
= Perm Nothing (first:map insert fs)
where
first = Branch perm p
insert (Branch perm' p')
= Branch (add (mapPerms flip perm') p) p'
addopt :: (Stream s Identity tok) => StreamPermParser s tok st (a -> b) -> a -> Parsec s st a -> StreamPermParser s tok st b
addopt perm@(Perm mf fs) x p
= Perm (fmap ($ x) mf) (first:map insert fs)
where
first = Branch perm p
insert (Branch perm' p')
= Branch (addopt (mapPerms flip perm') x p) p'
mapPerms :: (Stream s Identity tok) => (a -> b) -> StreamPermParser s tok st a -> StreamPermParser s tok st b
mapPerms f (Perm x xs)
= Perm (fmap f x) (map (mapBranch f) xs)
where
mapBranch f (Branch perm p)
= Branch (mapPerms (f.) perm) p