added tests for ‘Text.Megaparsec.Expr’

The single test covers 100 % of the module's code. However it doesn't
check quality of error messages, so we still have room for improvement.

Manual tests show that error messages are good.
This commit is contained in:
mrkkrp 2015-08-29 16:54:45 +06:00
parent 0b3efb649b
commit b35ecbc31f
2 changed files with 124 additions and 3 deletions

View File

@ -140,7 +140,8 @@ test-suite tests
, test-framework >= 0.6 && < 1
, test-framework-quickcheck2 >= 0.3 && < 0.4
default-extensions:
FlexibleInstances
FlexibleContexts
, FlexibleInstances
default-language: Haskell2010
benchmark benchmarks

View File

@ -29,10 +29,130 @@
module Expr (tests) where
import Test.Framework
import Control.Applicative (some, (<|>))
import Data.Bool (bool)
import Test.Framework
import Test.Framework.Providers.QuickCheck2 (testProperty)
import Test.QuickCheck
import Text.Megaparsec.Char
import Text.Megaparsec.Combinator
import Text.Megaparsec.Expr
import Text.Megaparsec.Prim
import Util
tests :: Test
tests = testGroup "Expression parsers"
[]
[ testProperty "correctness of expression parser" prop_correctness ]
-- Algebraic structures to build abstract syntax tree of our expression.
data Node
= Val Integer -- ^ literal value
| Neg Node -- ^ negation (prefix unary)
| Fac Node -- ^ factorial (postfix unary)
| Mod Node Node -- ^ modulo
| Sum Node Node -- ^ summation (addition)
| Sub Node Node -- ^ subtraction
| Pro Node Node -- ^ product
| Div Node Node -- ^ division
| Exp Node Node -- ^ exponentiation
deriving (Eq, Show)
instance Enum Node where
fromEnum (Val _) = 0
fromEnum (Neg _) = 0
fromEnum (Fac _) = 0
fromEnum (Mod _ _) = 0
fromEnum (Exp _ _) = 1
fromEnum (Pro _ _) = 2
fromEnum (Div _ _) = 2
fromEnum (Sum _ _) = 3
fromEnum (Sub _ _) = 3
toEnum _ = error "Oops!"
instance Ord Node where
x `compare` y = fromEnum x `compare` fromEnum y
showNode :: Node -> String
showNode (Val x) = show x
showNode n@(Neg x) = "-" ++ showGT n x
showNode n@(Fac x) = showGT n x ++ "!"
showNode n@(Mod x y) = showGE n x ++ " % " ++ showGE n y
showNode n@(Sum x y) = showGT n x ++ " + " ++ showGE n y
showNode n@(Sub x y) = showGT n x ++ " - " ++ showGE n y
showNode n@(Pro x y) = showGT n x ++ " * " ++ showGE n y
showNode n@(Div x y) = showGT n x ++ " / " ++ showGE n y
showNode n@(Exp x y) = showGE n x ++ " ^ " ++ showGT n y
showGT :: Node -> Node -> String
showGT parent node = bool showNode showCmp (node > parent) node
showGE :: Node -> Node -> String
showGE parent node = bool showNode showCmp (node >= parent) node
showCmp :: Node -> String
showCmp node = bool inParens showNode (fromEnum node == 0) node
inParens :: Node -> String
inParens x = "(" ++ showNode x ++ ")"
instance Arbitrary Node where
arbitrary = sized arbitraryN0
arbitraryN0 :: Int -> Gen Node
arbitraryN0 n = frequency [ (1, Mod <$> leaf <*> leaf)
, (9, arbitraryN1 n) ]
where leaf = arbitraryN1 (n `div` 2)
arbitraryN1 :: Int -> Gen Node
arbitraryN1 n =
frequency [ (1, Neg <$> arbitraryN2 n)
, (1, Fac <$> arbitraryN2 n)
, (7, arbitraryN2 n)]
arbitraryN2 :: Int -> Gen Node
arbitraryN2 0 = Val . getNonNegative <$> arbitrary
arbitraryN2 n = elements [Sum,Sub,Pro,Div,Exp] <*> leaf <*> leaf
where leaf = arbitraryN0 (n `div` 2)
-- Some helpers put here since we don't want to depend on
-- "Text.Megaparsec.Token".
lexeme :: Stream s m Char => ParsecT s u m a -> ParsecT s u m a
lexeme p = p <* hidden space
symbol :: Stream s m Char => String -> ParsecT s u m String
symbol = lexeme . string
parens :: Stream s m Char => ParsecT s u m a -> ParsecT s u m a
parens = between (symbol "(") (symbol ")")
integer :: Stream s m Char => ParsecT s u m Integer
integer = lexeme (read <$> some digitChar <?> "integer")
-- Here we use table of operators that makes use of all features of
-- 'makeExprParser'. Then we generate abstract syntax tree (AST) of complex
-- but valid expressions and render them to get their textual
-- representation.
expr :: Stream s m Char => ParsecT s u m Node
expr = makeExprParser term table <?> "expression"
term :: Stream s m Char => ParsecT s u m Node
term = parens expr <|> (Val <$> integer) <?> "term"
table :: Stream s m Char => [[Operator s u m Node]]
table = [ [ Prefix (symbol "-" *> pure Neg)
, Postfix (symbol "!" *> pure Fac)
, InfixN (symbol "%" *> pure Mod) ]
, [ InfixR (symbol "^" *> pure Exp) ]
, [ InfixL (symbol "*" *> pure Pro)
, InfixL (symbol "/" *> pure Div) ]
, [ InfixL (symbol "+" *> pure Sum)
, InfixL (symbol "-" *> pure Sub)] ]
prop_correctness :: Node -> Property
prop_correctness node = checkParser expr (Right node) (showNode node)