-- | -- Module : Text.Megaparsec.Expr -- Copyright : © 2015 Megaparsec contributors -- © 2007 Paolo Martini -- © 1999–2001 Daan Leijen -- License : BSD3 -- -- Maintainer : Mark Karpov -- Stability : experimental -- Portability : non-portable -- -- A helper module to parse expressions. Builds a parser given a table of -- operators. module Text.Megaparsec.Expr ( Assoc (..) , Operator (..) , OperatorTable , makeExprParser ) where import Control.Applicative ((<|>)) import Data.List (foldl') import Text.Megaparsec.Combinator import Text.Megaparsec.Prim -- | This data type specifies the associativity of operators: left, right -- or none. data Assoc = AssocNone | AssocLeft | AssocRight -- | This data type specifies operators that work on values of type @a@. -- An operator is either binary infix or unary prefix or postfix. A binary -- operator has also an associated associativity. data Operator s u m a = Infix (ParsecT s u m (a -> a -> a)) Assoc | Prefix (ParsecT s u m (a -> a)) | Postfix (ParsecT s u m (a -> a)) -- | An @OperatorTable s u m a@ is a list of @Operator s u m a@ lists. The -- list is ordered in descending precedence. All operators in one list have -- the same precedence (but may have a different associativity). type OperatorTable s u m a = [[Operator s u m a]] -- | @makeExprParser table term@ builds an expression parser for terms -- @term@ with operators from @table@, taking the associativity and -- precedence specified in @table@ into account. Prefix and postfix -- operators of the same precedence can only occur once (i.e. @--2@ is not -- allowed if @-@ is prefix negate). Prefix and postfix operators of the -- same precedence associate to the left (i.e. if @++@ is postfix increment, -- than @-2++@ equals @-1@, not @-3@). -- -- The @makeExprParser@ takes care of all the complexity involved in -- building expression parser. Here is an example of an expression parser -- that handles prefix signs, postfix increment and basic arithmetic. -- -- > expr = makeExprParser table term "expression" -- > -- > term = parens expr <|> natural "simple expression" -- > -- > table = [ [ prefix "-" negate -- > , prefix "+" id ] -- > , [ postfix "++" (+1) ] -- > , [ binary "*" (*) AssocLeft -- > , binary "/" div AssocLeft ] -- > , [ binary "+" (+) AssocLeft -- > , binary "-" (-) AssocLeft ] ] -- > -- > binary name fun assoc = Infix (reservedOp name >> return fun) assoc -- > prefix name fun = Prefix (reservedOp name >> return fun) -- > postfix name fun = Postfix (reservedOp name >> return fun) makeExprParser :: Stream s m t => OperatorTable s u m a -> ParsecT s u m a -> ParsecT s u m a makeExprParser ops simpleExpr = foldl' makeParser simpleExpr ops makeParser :: (Foldable t, Stream s m t1) => ParsecT s u m b -> t (Operator s u m b) -> ParsecT s u m b makeParser term ops = termP >>= \x -> rasP x <|> lasP x <|> nasP x <|> return x "operator" where (ras, las, nas, prefix, postfix) = foldr splitOp ([],[],[],[],[]) ops rasOp = choice ras lasOp = choice las nasOp = choice nas prefixOp = choice prefix "" postfixOp = choice postfix "" ambigious assoc op = try $ op >> fail ("ambiguous use of a " ++ assoc ++ " associative operator") ambigiousRight = ambigious "right" rasOp ambigiousLeft = ambigious "left" lasOp ambigiousNon = ambigious "non" nasOp termP = do pre <- prefixP x <- term post <- postfixP return $ post (pre x) postfixP = postfixOp <|> return id prefixP = prefixOp <|> return id rasP x = do { f <- rasOp; y <- termP >>= rasP1; return (f x y)} <|> ambigiousLeft <|> ambigiousNon rasP1 x = rasP x <|> return x lasP x = do { f <- lasOp; y <- termP; lasP1 (f x y) } <|> ambigiousRight <|> ambigiousNon lasP1 x = lasP x <|> return x nasP x = do f <- nasOp y <- termP ambigiousRight <|> ambigiousLeft <|> ambigiousNon <|> return (f x y) splitOp :: Operator s u m a -> ( [ParsecT s u m (a -> a -> a)] , [ParsecT s u m (a -> a -> a)] , [ParsecT s u m (a -> a -> a)] , [ParsecT s u m (a -> a)] , [ParsecT s u m (a -> a)] ) -> ( [ParsecT s u m (a -> a -> a)] , [ParsecT s u m (a -> a -> a)] , [ParsecT s u m (a -> a -> a)] , [ParsecT s u m (a -> a)] , [ParsecT s u m (a -> a)] ) splitOp (Infix op assoc) (ras, las, nas, prefix, postfix) = case assoc of AssocNone -> (ras, las, op:nas, prefix, postfix) AssocLeft -> (ras, op:las, nas, prefix, postfix) AssocRight -> (op:ras, las, nas, prefix, postfix) splitOp (Prefix op) (ras, las, nas, prefix, postfix) = (ras, las, nas, op:prefix, postfix) splitOp (Postfix op) (ras, las, nas, prefix, postfix) = (ras, las, nas, prefix, op:postfix)