-- | -- Module : Text.Megaparsec.Prim -- Copyright : © 2015 Megaparsec contributors -- © 2007 Paolo Martini -- © 1999–2001 Daan Leijen -- License : BSD3 -- -- Maintainer : Mark Karpov -- Stability : experimental -- Portability : portable -- -- The primitive parser combinators. {-# OPTIONS_HADDOCK not-home #-} module Text.Megaparsec.Prim ( -- * Used data-types State (..) , Stream (..) , Consumed (..) , Reply (..) , Parsec , ParsecT -- * Running parser , runParser , runParserT , parse , parse' , parseTest -- * Primitive combinators , unexpected , () , label , hidden , try , lookAhead , notFollowedBy , eof , token , tokens -- * Parser state combinators , getPosition , setPosition , getInput , setInput , getParserState , setParserState , updateParserState -- * User state combinators , getState , setState , modifyState ) where import Data.Bool (bool) import Data.Monoid import Control.Monad import Control.Monad.Cont.Class import Control.Monad.Error.Class import Control.Monad.Identity import Control.Monad.Reader.Class import Control.Monad.State.Class hiding (state) import Control.Monad.Trans import qualified Control.Applicative as A import qualified Data.ByteString.Char8 as B import qualified Data.ByteString.Lazy.Char8 as BL import qualified Data.Text as T import qualified Data.Text.Lazy as TL import Text.Megaparsec.Error import Text.Megaparsec.Pos import Text.Megaparsec.ShowToken -- | This is Megaparsec state, this is parametrized over stream type @s@, and -- user state @u@. data State s u = State { stateInput :: s , statePos :: !SourcePos , stateUser :: !u } deriving (Show, Eq) -- | An instance of @Stream s m t@ has stream type @s@, underlying monad @m@ -- and token type @t@ determined by the stream. -- -- Some rough guidelines for a “correct” instance of Stream: -- -- * @unfoldM uncons@ gives the @[t]@ corresponding to the stream. -- * A @Stream@ instance is responsible for maintaining the “position -- within the stream” in the stream state @s@. This is trivial unless -- you are using the monad in a non-trivial way. class (Monad m, ShowToken t) => Stream s m t | s -> t where uncons :: s -> m (Maybe (t, s)) instance (Monad m, ShowToken t) => Stream [t] m t where uncons [] = return Nothing uncons (t:ts) = return $ Just (t, ts) {-# INLINE uncons #-} instance Monad m => Stream B.ByteString m Char where uncons = return . B.uncons instance Monad m => Stream BL.ByteString m Char where uncons = return . BL.uncons instance Monad m => Stream T.Text m Char where uncons = return . T.uncons {-# INLINE uncons #-} instance Monad m => Stream TL.Text m Char where uncons = return . TL.uncons {-# INLINE uncons #-} -- | This data structure represents an aspect of result of parser's -- work. The two constructors have the following meaning: -- -- * @Cosumed@ is a wrapper for result when some part of input stream -- was consumed. -- * @Empty@ is a wrapper for result when input stream is empty. -- -- See also: 'Reply'. data Consumed a = Consumed a | Empty !a -- | This data structure represents an aspect of result of parser's -- work. The two constructors have the following meaning: -- -- * @Ok@ for successfully run parser. -- * @Error@ for failed parser. -- -- See also 'Consumed'. data Reply s u a = Ok a !(State s u) | Error ParseError -- | 'Hints' represent collection of strings to be included into 'ParserError' -- as “expected” messages when a parser fails without consuming input right -- after successful parser that produced the hints. -- -- For example, without hints you could get: -- -- >>> parseTest (many (char 'r') <* eof) "ra" -- parse error at line 1, column 2: -- unexpected 'a' -- expecting end of input -- -- we're getting better error messages with help of hints: -- -- >>> parseTest (many (char 'r') <* eof) "ra" -- parse error at line 1, column 2: -- unexpected 'a' -- expecting 'r' or end of input newtype Hints = Hints [[String]] deriving Monoid -- | Convert 'ParseError' record into 'Hints'. toHints :: ParseError -> Hints toHints err = Hints [messageString <$> msgs] where msgs = filter ((== 1) . fromEnum) $ errorMessages err -- | @withHints hs c@ makes “error” continuation @c@ use given hints @hs@. withHints :: Hints -> (ParseError -> m b) -> ParseError -> m b withHints (Hints xs) c = c . addHints where addHints err = foldr addErrorMessage err (Expected <$> concat xs) -- | @accHints hs c@ results in “OK” continuation that will add given hints -- @hs@ to third argument of original continuation @c@. accHints :: Hints -> (a -> State s u -> Hints -> m b) -> a -> State s u -> Hints -> m b accHints hs1 c x s hs2 = c x s (hs1 <> hs2) -- | Replace most recent group of hints (if any) with given string. Used in -- 'label' combinator. refreshLastHint :: Hints -> String -> Hints refreshLastHint (Hints []) _ = Hints [] refreshLastHint (Hints (_:xs)) "" = Hints xs refreshLastHint (Hints (_:xs)) l = Hints ([l]:xs) -- If you're reading this, you may be interested in how Megaparsec works on -- lower level. That's quite simple. 'ParsecT' is a wrapper around function -- that takes five arguments: -- -- * State. It includes input stream, position in input stream and -- user's backtracking state. -- -- * “Consumed-OK” continuation (cok). This is just a function that -- takes three arguments: result of parsing, state after parsing, and -- hints (see their description above). This continuation is called when -- something has been consumed during parsing and result is OK (no error -- occurred). -- -- * “Consumed-error” continuation (cerr). This function is called when -- some part of input stream has been consumed and parsing resulted in -- an error. When error happens, parsing stops and we're only interested -- in error message, so this continuation takes 'ParseError' as its only -- argument. -- -- * “Empty-OK” continuation (eok). The function takes the same -- arguments as “consumed-OK” continuation. “Empty-OK” is called when no -- input has been consumed and no error occurred. -- -- * “Empty-error” continuation (eerr). The function is called when no -- input has been consumed, but nonetheless parsing resulted in an -- error. Just like “consumed-error”, the continuation take single -- argument — 'ParseError' record. -- -- You call specific continuation when you want to proceed in that specific -- branch of control flow. -- | @Parsec@ is non-transformer variant of more general @ParsecT@ -- monad-transformer. type Parsec s u = ParsecT s u Identity -- | @ParsecT s u m a@ is a parser with stream type @s@, user state type @u@, -- underlying monad @m@ and return type @a@. Parsec is strict in the user -- state. If this is undesirable, simply use a data type like @data Box a = -- Box a@ and the state type @Box YourStateType@ to add a level of -- indirection. newtype ParsecT s u m a = ParsecT { unParser :: forall b . State s u -> (a -> State s u -> Hints -> m b) -- consumed-OK -> (ParseError -> m b) -- consumed-error -> (a -> State s u -> Hints -> m b) -- empty-OK -> (ParseError -> m b) -- empty-error -> m b } instance Functor (ParsecT s u m) where fmap = parsecMap parsecMap :: (a -> b) -> ParsecT s u m a -> ParsecT s u m b parsecMap f p = ParsecT $ \s cok cerr eok eerr -> unParser p s (cok . f) cerr (eok . f) eerr instance A.Applicative (ParsecT s u m) where pure = return (<*>) = ap (*>) = (>>) p1 <* p2 = do { x1 <- p1 ; void p2 ; return x1 } instance A.Alternative (ParsecT s u m) where empty = mzero (<|>) = mplus many p = reverse <$> manyAcc p manyAcc :: ParsecT s u m a -> ParsecT s u m [a] manyAcc p = ParsecT $ \s cok cerr eok _ -> let errToHints c err = c (toHints err) walk xs x s' _ = unParser p s' (seq xs $ walk $ x:xs) -- consumed-OK cerr -- consumed-error manyErr -- empty-OK (errToHints $ cok (x:xs) s') -- empty-error in unParser p s (walk []) cerr manyErr (errToHints $ eok [] s) manyErr :: a manyErr = error "Text.Megaparsec.Prim.many: combinator 'many' is applied to a parser \ \that accepts an empty string." instance Monad (ParsecT s u m) where return = parserReturn (>>=) = parserBind fail = parserFail parserReturn :: a -> ParsecT s u m a parserReturn x = ParsecT $ \s _ _ eok _ -> eok x s mempty parserBind :: ParsecT s u m a -> (a -> ParsecT s u m b) -> ParsecT s u m b {-# INLINE parserBind #-} parserBind m k = ParsecT $ \s cok cerr eok eerr -> let mcok x s' hs = unParser (k x) s' cok cerr (accHints hs cok) (withHints hs cerr) meok x s' hs = unParser (k x) s' cok cerr (accHints hs eok) (withHints hs eerr) in unParser m s mcok cerr meok eerr parserFail :: String -> ParsecT s u m a parserFail msg = ParsecT $ \s _ _ _ eerr -> eerr $ newErrorMessage (Message msg) (statePos s) -- | Low-level unpacking of the ParsecT type. To actually run parser see -- 'runParserT' and 'runParser'. runParsecT :: Monad m => ParsecT s u m a -> State s u -> m (Consumed (m (Reply s u a))) runParsecT p s = unParser p s cok cerr eok eerr where cok a s' _ = return . Consumed . return $ Ok a s' cerr err = return . Consumed . return $ Error err eok a s' _ = return . Empty . return $ Ok a s' eerr err = return . Empty . return $ Error err -- | Low-level creation of the ParsecT type. You really shouldn't have to do -- this. mkPT :: Monad m => (State s u -> m (Consumed (m (Reply s u a)))) -> ParsecT s u m a mkPT k = ParsecT $ \s cok cerr eok eerr -> do cons <- k s case cons of Consumed mrep -> do rep <- mrep case rep of Ok x s' -> cok x s' mempty Error err -> cerr err Empty mrep -> do rep <- mrep case rep of Ok x s' -> eok x s' mempty Error err -> eerr err instance MonadIO m => MonadIO (ParsecT s u m) where liftIO = lift . liftIO instance MonadReader r m => MonadReader r (ParsecT s u m) where ask = lift ask local f p = mkPT $ \s -> local f (runParsecT p s) instance MonadState s m => MonadState s (ParsecT s' u m) where get = lift get put = lift . put instance MonadCont m => MonadCont (ParsecT s u m) where callCC f = mkPT $ \s -> callCC $ \c -> runParsecT (f (\a -> mkPT $ \s' -> c (pack s' a))) s where pack s a = Empty $ return (Ok a s) instance MonadError e m => MonadError e (ParsecT s u m) where throwError = lift . throwError p `catchError` h = mkPT $ \s -> runParsecT p s `catchError` \e -> runParsecT (h e) s instance MonadPlus (ParsecT s u m) where mzero = parserZero mplus = parserPlus parserZero :: ParsecT s u m a parserZero = ParsecT $ \(State _ pos _) _ _ _ eerr -> eerr $ newErrorUnknown pos parserPlus :: ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a {-# INLINE parserPlus #-} parserPlus m n = ParsecT $ \s cok cerr eok eerr -> let meerr err = let ncerr err' = cerr (mergeError err' err) neok x s' hs = eok x s' (hs <> toHints err) neerr err' = eerr (mergeError err' err) in unParser n s cok ncerr neok neerr in unParser m s cok cerr eok meerr instance MonadTrans (ParsecT s u) where lift amb = ParsecT $ \s _ _ eok _ -> amb >>= \a -> eok a s mempty -- Running a parser -- | The most general way to run a parser over the identity monad. -- @runParser p state filePath input@ runs parser @p@ on the input list of -- tokens @input@, obtained from source @filePath@ with the initial user -- state @st@. The @filePath@ is only used in error messages and may be the -- empty string. Returns either a 'ParseError' ('Left') or a value of type -- @a@ ('Right'). -- -- > parseFromFile p fname = runParser p () fname <$> readFile fname runParser :: Stream s Identity t => Parsec s u a -> u -> SourceName -> s -> Either ParseError a runParser p u name s = runIdentity $ runParserT p u name s -- | The most general way to run a parser. @runParserT p state filePath -- input@ runs parser @p@ on the input list of tokens @input@, obtained from -- source @filePath@ with the initial user state @st@. The @filePath@ is -- only used in error messages and may be the empty string. Returns a -- computation in the underlying monad @m@ that return either a 'ParseError' -- ('Left') or a value of type @a@ ('Right'). runParserT :: Stream s m t => ParsecT s u m a -> u -> SourceName -> s -> m (Either ParseError a) runParserT p u name s = do res <- runParsecT p (State s (initialPos name) u) r <- parserReply res case r of Ok x _ -> return $ Right x Error err -> return $ Left err where parserReply res = case res of Consumed r -> r Empty r -> r -- | @parse p filePath input@ runs a parser @p@ over identity without user -- state. The @filePath@ is only used in error messages and may be the empty -- string. Returns either a 'ParseError' ('Left') or a value of type @a@ -- ('Right'). -- -- > main = case (parse numbers "" "11, 2, 43") of -- > Left err -> print err -- > Right xs -> print (sum xs) -- > -- > numbers = commaSep integer parse :: Stream s Identity t => Parsec s () a -> SourceName -> s -> Either ParseError a parse p = runParser p () -- | @parse' p input@ runs parser @p@ on @input@ and returns result -- inside 'Just' on success and 'Nothing' on failure. This function also -- parses 'eof', so all input should be consumed by the parser @p@. -- -- The function is supposed to be useful for lightweight parsing, where -- error messages (and thus file name) are not important and entire input -- should be parsed. For example it can be used when parsing of single -- number according to specification of its format is desired. parse' :: Stream s Identity t => Parsec s () a -> s -> Maybe a parse' p s = case parse (p <* eof) "" s of Left _ -> Nothing Right x -> Just x -- | The expression @parseTest p input@ applies a parser @p@ against -- input @input@ and prints the result to stdout. Used for testing. parseTest :: (Stream s Identity t, Show a) => Parsec s () a -> s -> IO () parseTest p input = case parse p "" input of Left err -> putStr "parse error at " >> print err Right x -> print x -- Primitive combinators -- | The parser @unexpected msg@ always fails with an unexpected error -- message @msg@ without consuming any input. -- -- The parsers 'fail', ('') and @unexpected@ are the three parsers used -- to generate error messages. Of these, only ('') is commonly used. unexpected :: Stream s m t => String -> ParsecT s u m a unexpected msg = ParsecT $ \(State _ pos _) _ _ _ eerr -> eerr $ newErrorMessage (Unexpected msg) pos infix 0 -- | The parser @p \ msg@ behaves as parser @p@, but whenever the -- parser @p@ fails /without consuming any input/, it replaces expect error -- messages with the expect error message @msg@. -- -- This is normally used at the end of a set alternatives where we want to -- return an error message in terms of a higher level construct rather than -- returning all possible characters. For example, if the @expr@ parser from -- the “try” example would fail, the error message is: “…: expecting -- expression”. Without the @(\)@ combinator, the message would be like -- “…: expecting \"let\" or letter”, which is less friendly. () :: ParsecT s u m a -> String -> ParsecT s u m a () = flip label -- | A synonym for @(\)@, but as a function instead of an operator. label :: String -> ParsecT s u m a -> ParsecT s u m a label l p = ParsecT $ \s cok cerr eok eerr -> let cok' x s' hs = cok x s' $ refreshLastHint hs l eok' x s' hs = eok x s' $ refreshLastHint hs l eerr' err = eerr $ setErrorMessage (Expected l) err in unParser p s cok' cerr eok' eerr' -- | @hidden p@ behaves just like parser @p@, but it doesn't show any “expected” -- tokens in error message when @p@ fails. hidden :: ParsecT s u m a -> ParsecT s u m a hidden = label "" -- | The parser @try p@ behaves like parser @p@, except that it -- pretends that it hasn't consumed any input when an error occurs. -- -- This combinator is used whenever arbitrary look ahead is needed. Since it -- pretends that it hasn't consumed any input when @p@ fails, the ('A.<|>') -- combinator will try its second alternative even when the first parser -- failed while consuming input. -- -- For example, here is a parser that will /try/ (sorry for the pun) to -- parse word “let” or “lexical”: -- -- >>> parseTest (string "let" <|> string "lexical") "lexical" -- parse error at line 1, column 1: -- unexpected "lex" -- expecting "let" -- -- First parser consumed “le” and failed, @string "lexical"@ couldn't -- succeed with “xical” as its input! Things get much better with help of -- @try@: -- -- >>> parseTest (try (string "let") <|> string "lexical") "lexical" -- "lexical" -- -- @try@ also improves error messages in case of overlapping alternatives, -- because Megparsec's hint system can be used: -- -- >>> parseTest (try (string "let") <|> string "lexical") "le" -- parse error at line 1, column 1: -- unexpected "le" -- expecting "let" or "lexical" try :: ParsecT s u m a -> ParsecT s u m a try p = ParsecT $ \s cok _ eok eerr -> unParser p s cok eerr eok eerr -- | @lookAhead p@ parses @p@ without consuming any input. -- -- If @p@ fails and consumes some input, so does @lookAhead@. Combine with -- 'try' if this is undesirable. lookAhead :: Stream s m t => ParsecT s u m a -> ParsecT s u m a lookAhead p = ParsecT $ \s _ cerr eok eerr -> let eok' a _ _ = eok a s mempty in unParser p s eok' cerr eok' eerr -- | @notFollowedBy p@ only succeeds when parser @p@ fails. This parser -- does not consume any input and can be used to implement the “longest -- match” rule. notFollowedBy :: Stream s m t => ParsecT s u m a -> ParsecT s u m () notFollowedBy p = ParsecT $ \s@(State input pos _) _ _ eok eerr -> do l <- maybe eoi (showToken . fst) <$> uncons input let cok' _ _ _ = eerr $ unexpectedErr l pos cerr' _ = eok () s mempty eok' _ _ _ = eerr $ unexpectedErr l pos eerr' _ = eok () s mempty unParser p s cok' cerr' eok' eerr' -- | This parser only succeeds at the end of the input. eof :: Stream s m t => ParsecT s u m () eof = eof' eoi eof' :: Stream s m t => ParsecT s u m () eof' = ParsecT $ \s@(State input pos _) _ _ eok eerr -> do r <- uncons input case r of Nothing -> eok () s mempty Just (x,_) -> eerr $ unexpectedErr (showToken x) pos -- | The parser @token nextPos testTok@ accepts a token @t@ with result -- @x@ when the function @testTok t@ returns @'Just' x@. The position of the -- /next/ token should be returned when @nextPos@ is called with the current -- source position @pos@, the current token @t@ and the rest of the tokens -- @toks@, @nextPos pos t toks@. -- -- This is the most primitive combinator for accepting tokens. For example, -- the 'Text.Megaparsec.Char.char' parser could be implemented as: -- -- > char c = token nextPos testChar -- > where testChar x = if x == c then Just x else Nothing -- > nextPos pos x xs = updatePosChar pos x token :: Stream s m t => (SourcePos -> t -> s -> SourcePos) -- ^ Next position calculating function. -> (t -> Maybe a) -- ^ Matching function for the token to parse. -> ParsecT s u m a {-# INLINE token #-} token nextpos test = ParsecT $ \(State input pos u) cok _ _ eerr -> do r <- uncons input case r of Nothing -> eerr $ unexpectedErr eoi pos Just (c,cs) -> case test c of Just x -> let newpos = nextpos pos c cs newstate = State cs newpos u in seq newpos $ seq newstate $ cok x newstate mempty Nothing -> eerr $ unexpectedErr (showToken c) pos -- | The parser @tokens posFromTok@ parses list of tokens and returns -- it. The resulting parser will use 'showToken' to pretty-print the -- collection of tokens. -- -- This can be used to example to write 'Text.Megaparsec.Char.string': -- -- > string = tokens updatePosString tokens :: (Stream s m t, Eq t, ShowToken [t]) => (SourcePos -> [t] -> SourcePos) -- ^ Computes position of tokens. -> [t] -- ^ List of tokens to parse -> ParsecT s u m [t] {-# INLINE tokens #-} tokens _ [] = ParsecT $ \s _ _ eok _ -> eok [] s mempty tokens nextposs tts = ParsecT $ \(State input pos u) cok cerr _ eerr -> let errExpect x = setErrorMessage (Expected $ showToken tts) (newErrorMessage (Unexpected x) pos) walk [] _ rs = let pos' = nextposs pos tts s' = State rs pos' u in cok tts s' mempty walk (t:ts) i rs = do sr <- uncons rs let errorCont = if i == 0 then eerr else cerr what = bool (showToken $ take i tts) "end of input" (i == 0) case sr of Nothing -> errorCont . errExpect $ what Just (x,xs) | t == x -> walk ts (succ i) xs | otherwise -> errorCont . errExpect . showToken $ take i tts ++ [x] in walk tts 0 input unexpectedErr :: String -> SourcePos -> ParseError unexpectedErr msg = newErrorMessage (Unexpected msg) eoi :: String eoi = "end of input" -- Parser state combinators -- | Returns the current source position. See also 'SourcePos'. getPosition :: Monad m => ParsecT s u m SourcePos getPosition = statePos <$> getParserState -- | @setPosition pos@ sets the current source position to @pos@. setPosition :: Monad m => SourcePos -> ParsecT s u m () setPosition pos = updateParserState (\(State s _ u) -> State s pos u) -- | Returns the current input. getInput :: Monad m => ParsecT s u m s getInput = stateInput <$> getParserState -- | @setInput input@ continues parsing with @input@. The 'getInput' and -- @setInput@ functions can for example be used to deal with #include files. setInput :: Monad m => s -> ParsecT s u m () setInput s = updateParserState (\(State _ pos u) -> State s pos u) -- | Returns the full parser state as a 'State' record. getParserState :: Monad m => ParsecT s u m (State s u) getParserState = ParsecT $ \s _ _ eok _ -> eok s s mempty -- | @setParserState st@ set the full parser state to @st@. setParserState :: Monad m => State s u -> ParsecT s u m () setParserState st = updateParserState (const st) -- | @updateParserState f@ applies function @f@ to the parser state. updateParserState :: (State s u -> State s u) -> ParsecT s u m () updateParserState f = ParsecT $ \s _ _ eok _ -> eok () (f s) mempty -- User state combinators -- | Returns the current user state. getState :: Monad m => ParsecT s u m u getState = stateUser <$> getParserState -- | @setState st@ set the user state to @st@. setState :: Monad m => u -> ParsecT s u m () setState u = updateParserState (\s -> s { stateUser = u }) -- | @modifyState f@ applies function @f@ to the user state. Suppose -- that we want to count identifiers in a source, we could use the user -- state as: -- -- > expr = Id <$> identifier <* modifyState (+1) modifyState :: Monad m => (u -> u) -> ParsecT s u m () modifyState f = updateParserState (\s -> s { stateUser = f (stateUser s)})