-- | -- Module : Text.Megaparsec.Prim -- Copyright : © 2015 Megaparsec contributors -- © 2007 Paolo Martini -- © 1999–2001 Daan Leijen -- License : BSD3 -- -- Maintainer : Mark Karpov -- Stability : experimental -- Portability : portable -- -- The primitive parser combinators. {-# OPTIONS_HADDOCK not-home #-} module Text.Megaparsec.Prim ( State (..) , Stream (..) , Consumed (..) , Reply (..) , ParsecT , Parsec , runParsecT , mkPT , unknownError , sysUnExpectError , unexpected , mergeErrorReply , () , label , runParserT , runParser , parse , parseMaybe , parseTest , try , lookAhead , token , tokens , tokenPrim , skipMany , getPosition , getInput , setPosition , setInput , getParserState , setParserState , updateParserState , getState , putState , modifyState ) where import qualified Data.ByteString.Char8 as C import qualified Data.ByteString.Lazy.Char8 as CL import qualified Data.Text as T import qualified Data.Text.Lazy as TL import Control.Monad import Control.Monad.Identity import Control.Monad.Trans import Control.Monad.Reader.Class import Control.Monad.State.Class hiding (state) import Control.Monad.Cont.Class import Control.Monad.Error.Class import qualified Control.Applicative as A import Text.Megaparsec.Error import Text.Megaparsec.Pos import Text.Megaparsec.ShowToken -- | This is Parsec state, this is parametrized over stream type @s@, and -- user state @u@. data State s u = State { stateInput :: s , statePos :: !SourcePos , stateUser :: !u } -- | An instance of @Stream s m t@ has stream type @s@, underlying monad @m@ -- and token type @t@ determined by the stream. -- -- Some rough guidelines for a \"correct\" instance of Stream: -- -- * unfoldM uncons gives the [t] corresponding to the stream -- -- * A @Stream@ instance is responsible for maintaining the \"position -- within the stream\" in the stream state @s@. This is trivial unless -- you are using the monad in a non-trivial way. class (Monad m, ShowToken t) => Stream s m t | s -> t where uncons :: s -> m (Maybe (t, s)) instance (Monad m, ShowToken t) => Stream [t] m t where uncons [] = return Nothing uncons (t:ts) = return $ Just (t, ts) {-# INLINE uncons #-} instance Monad m => Stream CL.ByteString m Char where uncons = return . CL.uncons instance Monad m => Stream C.ByteString m Char where uncons = return . C.uncons instance Monad m => Stream T.Text m Char where uncons = return . T.uncons {-# INLINE uncons #-} instance Monad m => Stream TL.Text m Char where uncons = return . TL.uncons {-# INLINE uncons #-} -- | This data structure represents an aspect of result of parser's -- work. The two constructors have the following meaning: -- -- * @Cosumed@ is a wrapper for result when some part of input stream -- was consumed. -- -- * @Empty@ is a wrapper for result when input stream is empty. -- -- You shouldn't really need to know this. See also: 'Reply'. data Consumed a = Consumed a | Empty !a instance Functor Consumed where fmap f (Consumed x) = Consumed (f x) fmap f (Empty x) = Empty (f x) -- | This data structure represents an aspect of result of parser's -- work. The two constructors have the following meaning: -- -- * @Ok@ for successfully run parser. -- * @Error@ for failed parser. -- -- You shouldn't really need to know this. See also 'Consumed'. data Reply s u a = Ok a !(State s u) ParseError | Error ParseError instance Functor (Reply s u) where fmap f (Ok x s e) = Ok (f x) s e fmap _ (Error e) = Error e -- | @ParsecT s u m a@ is a parser with stream type @s@, user state type @u@, -- underlying monad @m@ and return type @a@. Parsec is strict in the user -- state. If this is undesirable, simply use a data type like @data Box a = -- Box a@ and the state type @Box YourStateType@ to add a level of -- indirection. newtype ParsecT s u m a = ParsecT { unParser :: forall b . State s u -> (a -> State s u -> ParseError -> m b) -- consumed ok -> (ParseError -> m b) -- consumed err -> (a -> State s u -> ParseError -> m b) -- empty ok -> (ParseError -> m b) -- empty err -> m b } -- | @Parsec@ is non-transformer variant of more general @ParsecT@ -- monad-transformer. type Parsec s u = ParsecT s u Identity instance Functor (ParsecT s u m) where fmap = parsecMap parsecMap :: (a -> b) -> ParsecT s u m a -> ParsecT s u m b parsecMap f p = ParsecT $ \s cok cerr eok eerr -> unParser p s (cok . f) cerr (eok . f) eerr instance A.Applicative (ParsecT s u m) where pure = return (<*>) = ap -- TODO: Can this be optimized? (*>) = (>>) p1 <* p2 = do { x1 <- p1 ; void p2 ; return x1 } instance A.Alternative (ParsecT s u m) where empty = mzero (<|>) = mplus many p = reverse <$> manyAccum (:) p instance Monad (ParsecT s u m) where return = parserReturn (>>=) = parserBind fail = parserFail parserReturn :: a -> ParsecT s u m a parserReturn x = ParsecT $ \s _ _ eok _ -> eok x s (unknownError s) parserBind :: ParsecT s u m a -> (a -> ParsecT s u m b) -> ParsecT s u m b {-# INLINE parserBind #-} parserBind m k = ParsecT $ \s cok cerr eok eerr -> let -- consumed-okay case for m mcok x st err = let -- if (k x) consumes, those go straight up pcok = cok pcerr = cerr -- if (k x) doesn't consume input, but is okay, we still -- return in the consumed continuation peok x' s' err' = cok x' s' (mergeError err err') -- if (k x) doesn't consume input, but errors, we return the -- error in the 'consumed-error' continuation peerr err' = cerr (mergeError err err') in unParser (k x) st pcok pcerr peok peerr -- empty-ok case for m meok x st err = let -- in these cases, (k x) can return as empty pcok = cok peok x' s' err' = eok x' s' (mergeError err err') pcerr = cerr peerr err' = eerr (mergeError err err') in unParser (k x) st pcok pcerr peok peerr -- consumed-error case for m mcerr = cerr -- empty-error case for m meerr = eerr in unParser m s mcok mcerr meok meerr parserFail :: String -> ParsecT s u m a parserFail msg = ParsecT $ \s _ _ _ eerr -> eerr $ newErrorMessage (Message msg) (statePos s) -- | Low-level unpacking of the ParsecT type. To actually run parser see -- 'runParserT' and 'runParser'. runParsecT :: Monad m => ParsecT s u m a -> State s u -> m (Consumed (m (Reply s u a))) runParsecT p s = unParser p s cok cerr eok eerr where cok a s' err = return . Consumed . return $ Ok a s' err cerr err = return . Consumed . return $ Error err eok a s' err = return . Empty . return $ Ok a s' err eerr err = return . Empty . return $ Error err -- | Low-level creation of the ParsecT type. You really shouldn't have to do -- this. mkPT :: Monad m => (State s u -> m (Consumed (m (Reply s u a)))) -> ParsecT s u m a mkPT k = ParsecT $ \s cok cerr eok eerr -> do cons <- k s case cons of Consumed mrep -> do rep <- mrep case rep of Ok x s' err -> cok x s' err Error err -> cerr err Empty mrep -> do rep <- mrep case rep of Ok x s' err -> eok x s' err Error err -> eerr err instance MonadIO m => MonadIO (ParsecT s u m) where liftIO = lift . liftIO instance MonadReader r m => MonadReader r (ParsecT s u m) where ask = lift ask local f p = mkPT $ \s -> local f (runParsecT p s) -- I'm presuming the user might want a separate, non-backtracking state -- aside from the Parsec user state. instance MonadState s m => MonadState s (ParsecT s' u m) where get = lift get put = lift . put instance MonadCont m => MonadCont (ParsecT s u m) where callCC f = mkPT $ \s -> callCC $ \c -> runParsecT (f (\a -> mkPT $ \s' -> c (pack s' a))) s where pack s a= Empty $ return (Ok a s (unknownError s)) instance MonadError e m => MonadError e (ParsecT s u m) where throwError = lift . throwError p `catchError` h = mkPT $ \s -> runParsecT p s `catchError` \e -> runParsecT (h e) s instance MonadPlus (ParsecT s u m) where mzero = parserZero mplus = parserPlus parserZero :: ParsecT s u m a parserZero = ParsecT $ \s _ _ _ eerr -> eerr $ unknownError s parserPlus :: ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a {-# INLINE parserPlus #-} parserPlus m n = ParsecT $ \s cok cerr eok eerr -> let meerr err = let neok y s' err' = eok y s' (mergeError err err') neerr err' = eerr $ mergeError err err' in unParser n s cok cerr neok neerr in unParser m s cok cerr eok meerr instance MonadTrans (ParsecT s u) where lift amb = ParsecT $ \s _ _ eok _ -> do a <- amb eok a s $ unknownError s -- Errors -- | Create new @ParseError@ object. It will contain information about -- position at which error is happened and nothing more. unknownError :: State s u -> ParseError unknownError state = newErrorUnknown (statePos state) -- | @sysUnExpectError m pos@ creates 'Reply' that represents \"unexpected\" -- error with associated message @m@ and position @pos@. sysUnExpectError :: String -> SourcePos -> Reply s u a sysUnExpectError msg pos = Error (newErrorMessage (SysUnExpect msg) pos) -- | The parser @unexpected msg@ always fails with an unexpected error -- message @msg@ without consuming any input. -- -- The parsers 'fail', ('') and @unexpected@ are the three parsers used -- to generate error messages. Of these, only ('') is commonly used. For -- an example of the use of @unexpected@, see the definition of -- 'Text.Megaparsec.Combinator.notFollowedBy'. unexpected :: Stream s m t => String -> ParsecT s u m a unexpected msg = ParsecT $ \s _ _ _ eerr -> eerr $ newErrorMessage (UnExpect msg) (statePos s) -- | @mergeErrorReply e reply@ returns @reply@ with error @e@ added. mergeErrorReply :: ParseError -> Reply s u a -> Reply s u a mergeErrorReply err1 reply = case reply of Ok x state err2 -> Ok x state (mergeError err1 err2) Error err2 -> Error (mergeError err1 err2) -- Basic combinators infix 0 -- | The parser @p \ msg@ behaves as parser @p@, but whenever the -- parser @p@ fails /without consuming any input/, it replaces expect error -- messages with the expect error message @msg@. -- -- This is normally used at the end of a set alternatives where we want to -- return an error message in terms of a higher level construct rather than -- returning all possible characters. For example, if the @expr@ parser from -- the 'try' example would fail, the error message is: '…: expecting -- expression'. Without the @(\)@ combinator, the message would be like -- '…: expecting \"let\" or letter', which is less friendly. () :: ParsecT s u m a -> String -> ParsecT s u m a p msg = label p msg -- | A synonym for @\@, but as a function instead of an operator. label :: ParsecT s u m a -> String -> ParsecT s u m a label p msg = labels p [msg] labels :: ParsecT s u m a -> [String] -> ParsecT s u m a labels p msgs = ParsecT $ \s cok cerr eok eerr -> let eok' x s' error' = eok x s' $ if errorIsUnknown error' then error' else setExpectErrors error' msgs eerr' err = eerr $ setExpectErrors err msgs in unParser p s cok cerr eok' eerr' where setExpectErrors err [] = setErrorMessage (Expect "") err setExpectErrors err [m] = setErrorMessage (Expect m) err setExpectErrors err (m:ms) = foldr (\msg' err' -> addErrorMessage (Expect msg') err') (setErrorMessage (Expect m) err) ms -- Running a parser -- | The most general way to run a parser. @runParserT p state filePath -- input@ runs parser @p@ on the input list of tokens @input@, obtained from -- source @filePath@ with the initial user state @st@. The @filePath@ is -- only used in error messages and may be the empty string. Returns a -- computation in the underlying monad @m@ that return either a 'ParseError' -- ('Left') or a value of type @a@ ('Right'). runParserT :: Stream s m t => ParsecT s u m a -> u -> SourceName -> s -> m (Either ParseError a) runParserT p u name s = do res <- runParsecT p (State s (initialPos name) u) r <- parserReply res case r of Ok x _ _ -> return (Right x) Error err -> return (Left err) where parserReply res = case res of Consumed r -> r Empty r -> r -- | The most general way to run a parser over the Identity -- monad. @runParser p state filePath input@ runs parser @p@ on the input -- list of tokens @input@, obtained from source @filePath@ with the initial -- user state @st@. The @filePath@ is only used in error messages and may -- be the empty string. Returns either a 'ParseError' ('Left') or a value of -- type @a@ ('Right'). -- -- > parseFromFile p fname = runParser p () fname <$> readFile fname runParser :: Stream s Identity t => Parsec s u a -> u -> SourceName -> s -> Either ParseError a runParser p u name s = runIdentity $ runParserT p u name s -- | @parse p filePath input@ runs a parser @p@ over Identity without user -- state. The @filePath@ is only used in error messages and may be the empty -- string. Returns either a 'ParseError' ('Left') or a value of type @a@ -- ('Right'). -- -- > main = case (parse numbers "" "11, 2, 43") of -- > Left err -> print err -- > Right xs -> print (sum xs) -- > -- > numbers = commaSep integer parse :: Stream s Identity t => Parsec s () a -> SourceName -> s -> Either ParseError a parse p = runParser p () -- | @parseMaybe p input@ runs parser @p@ on @input@ and returns result -- inside @Just@ on success and @Nothing@ on failure. parseMaybe :: Stream s Identity t => Parsec s () a -> s -> Maybe a parseMaybe p s = case parse p "" s of Left _ -> Nothing Right x -> Just x -- | The expression @parseTest p input@ applies a parser @p@ against -- input @input@ and prints the result to stdout. Used for testing. parseTest :: (Stream s Identity t, Show a) => Parsec s () a -> s -> IO () parseTest p input = case parse p "" input of Left err -> putStr "parse error at " >> print err Right x -> print x -- | The parser @try p@ behaves like parser @p@, except that it -- pretends that it hasn't consumed any input when an error occurs. -- -- This combinator is used whenever arbitrary look ahead is needed. Since it -- pretends that it hasn't consumed any input when @p@ fails, the ('<|>') -- combinator will try its second alternative even when the first parser -- failed while consuming input. -- -- The @try@ combinator can for example be used to distinguish identifiers -- and reserved words. Both reserved words and identifiers are a sequence of -- letters. Whenever we expect a certain reserved word where we can also -- expect an identifier we have to use the @try@ combinator. Suppose we -- write: -- -- > expr = letExpr <|> identifier "expression" -- > -- > letExpr = string "let" >> … -- > identifier = some letter -- -- If the user writes \"lexical\", the parser fails with: @unexpected \'x\', -- expecting \'t\' in \"let\"@. Indeed, since the ('<|>') combinator only -- tries alternatives when the first alternative hasn't consumed input, the -- @identifier@ parser is never tried (because the prefix \"le\" of the -- @string \"let\"@ parser is already consumed). The right behaviour can be -- obtained by adding the @try@ combinator: -- -- > expr = letExpr <|> identifier "expression" -- > -- > letExpr = try (string "let") >> … -- > identifier = some letter try :: ParsecT s u m a -> ParsecT s u m a try p = ParsecT $ \s cok _ eok eerr -> unParser p s cok eerr eok eerr -- | @lookAhead p@ parses @p@ without consuming any input. -- -- If @p@ fails and consumes some input, so does @lookAhead@. Combine with -- 'try' if this is undesirable. lookAhead :: (Stream s m t) => ParsecT s u m a -> ParsecT s u m a lookAhead p = ParsecT $ \s _ cerr eok eerr -> do let eok' a _ _ = eok a s (newErrorUnknown (statePos s)) unParser p s eok' cerr eok' eerr -- | The parser @token posFromTok testTok@ accepts a token @t@ with result -- @x@ when the function @testTok t@ returns @'Just' x@. The source position -- of the @t@ should be returned by @posFromTok t@. Token will be shown with -- 'showToken' function. -- -- This combinator is expressed in terms of 'tokenPrim'. It is used to -- accept user defined token streams. For example, suppose that we have a -- stream of basic tokens tupled with source positions. We can than define a -- parser that accepts single tokens as: -- -- > mytoken x = token posFromTok testTok -- > where posFromTok (pos,t) = pos -- > testTok (pos,t) = if x == t then Just t else Nothing token :: Stream s Identity t => (t -> SourcePos) -- ^ Computes the position of a token. -> (t -> Maybe a) -- ^ Matching function for the token to parse. -> Parsec s u a token tokpos = tokenPrim nextpos where nextpos _ tok ts = case runIdentity (uncons ts) of Nothing -> tokpos tok Just (tok', _) -> tokpos tok' -- | The parser @tokens posFromTok@ parses list of tokens and returns -- it. The resulting parser will use @showToks@ to pretty-print the -- collection of tokens. -- -- This can be used to example to write 'Text.Megaparsec.Char.string': -- -- > string = tokens updatePosString tokens :: (Stream s m t, Eq t, ShowToken [t]) => (SourcePos -> [t] -> SourcePos) -- ^ Computes position of tokens. -> [t] -- ^ List of tokens to parse -> ParsecT s u m [t] {-# INLINE tokens #-} tokens _ [] = ParsecT $ \s _ _ eok _ -> eok [] s $ unknownError s tokens nextposs tts@(tok:toks) = ParsecT $ \(State input pos u) cok cerr _ eerr -> let errEof = setErrorMessage (Expect (showToken tts)) (newErrorMessage (SysUnExpect "") pos) errExpect x = setErrorMessage (Expect (showToken tts)) (newErrorMessage (SysUnExpect (showToken [x])) pos) walk [] rs = ok rs walk (t:ts) rs = do sr <- uncons rs case sr of Nothing -> cerr errEof Just (x,xs) | t == x -> walk ts xs | otherwise -> cerr $ errExpect x ok rs = let pos' = nextposs pos tts s' = State rs pos' u in cok tts s' (newErrorUnknown pos') in do sr <- uncons input case sr of Nothing -> eerr errEof Just (x,xs) | tok == x -> walk toks xs | otherwise -> eerr $ errExpect x -- | The parser @tokenPrim nextPos testTok@ accepts a token @t@ with result -- @x@ when the function @testTok t@ returns @'Just' x@. The position of the -- /next/ token should be returned when @nextPos@ is called with the current -- source position @pos@, the current token @t@ and the rest of the tokens -- @toks@, @nextPos pos t toks@. -- -- This is the most primitive combinator for accepting tokens. For example, -- the 'Text.Megaparsec.Char.char' parser could be implemented as: -- -- > char c = tokenPrim nextPos testChar -- > where testChar x = if x == c then Just x else Nothing -- > nextPos pos x xs = updatePosChar pos x tokenPrim :: Stream s m t => (SourcePos -> t -> s -> SourcePos) -- ^ Next position calculating function. -> (t -> Maybe a) -- ^ Matching function for the token to parse. -> ParsecT s u m a {-# INLINE tokenPrim #-} tokenPrim nextpos = tokenPrimEx nextpos Nothing tokenPrimEx :: Stream s m t => (SourcePos -> t -> s -> SourcePos) -> Maybe (SourcePos -> t -> s -> u -> u) -> (t -> Maybe a) -> ParsecT s u m a {-# INLINE tokenPrimEx #-} tokenPrimEx nextpos Nothing test = ParsecT $ \(State input pos user) cok _ _ eerr -> do r <- uncons input case r of Nothing -> eerr $ unexpectError "" pos Just (c,cs) -> case test c of Just x -> let newpos = nextpos pos c cs newstate = State cs newpos user in seq newpos $ seq newstate $ cok x newstate (newErrorUnknown newpos) Nothing -> eerr $ unexpectError (showToken c) pos tokenPrimEx nextpos (Just nextState) test = ParsecT $ \(State input pos user) cok _ _ eerr -> do r <- uncons input case r of Nothing -> eerr $ unexpectError "" pos Just (c,cs) -> case test c of Just x -> let newpos = nextpos pos c cs newUser = nextState pos c cs user newstate = State cs newpos newUser in seq newpos $ seq newstate $ cok x newstate $ newErrorUnknown newpos Nothing -> eerr $ unexpectError (showToken c) pos unexpectError :: String -> SourcePos -> ParseError unexpectError msg = newErrorMessage (SysUnExpect msg) -- | @skipMany p@ applies the parser @p@ /zero/ or more times, skipping -- its result. -- -- > spaces = skipMany space skipMany :: ParsecT s u m a -> ParsecT s u m () skipMany p = void $ manyAccum (\_ _ -> []) p manyAccum :: (a -> [a] -> [a]) -> ParsecT s u m a -> ParsecT s u m [a] manyAccum acc p = ParsecT $ \s cok cerr eok _ -> let walk xs x s' _ = unParser p s' (seq xs $ walk $ acc x xs) -- consumed-ok cerr -- consumed-err manyErr -- empty-ok (cok (acc x xs) s') -- empty-err in unParser p s (walk []) cerr manyErr (eok [] s) manyErr :: forall t . t manyErr = error "Text.Megaparsec.Prim.many: combinator 'many' is applied to a parser \ \that accepts an empty string." -- Parser state combinators -- | Returns the current source position. See also 'SourcePos'. getPosition :: Monad m => ParsecT s u m SourcePos getPosition = statePos <$> getParserState -- | Returns the current input. getInput :: Monad m => ParsecT s u m s getInput = stateInput <$> getParserState -- | @setPosition pos@ sets the current source position to @pos@. setPosition :: Monad m => SourcePos -> ParsecT s u m () setPosition pos = void $ updateParserState (\(State s _ u) -> State s pos u) -- | @setInput input@ continues parsing with @input@. The 'getInput' and -- @setInput@ functions can for example be used to deal with #include files. setInput :: Monad m => s -> ParsecT s u m () setInput s = void $ updateParserState (\(State _ pos u) -> State s pos u) -- | Returns the full parser state as a 'State' record. getParserState :: Monad m => ParsecT s u m (State s u) getParserState = updateParserState id -- | @setParserState st@ set the full parser state to @st@. setParserState :: Monad m => State s u -> ParsecT s u m (State s u) setParserState st = updateParserState (const st) -- | @updateParserState f@ applies function @f@ to the parser state. updateParserState :: (State s u -> State s u) -> ParsecT s u m (State s u) updateParserState f = ParsecT $ \s _ _ eok _ -> let s' = f s in eok s' s' $ unknownError s' -- User state combinators -- | Returns the current user state. getState :: Monad m => ParsecT s u m u getState = stateUser `liftM` getParserState -- | @putState st@ set the user state to @st@. putState :: Monad m => u -> ParsecT s u m () putState u = void $ updateParserState (\s -> s { stateUser = u }) -- | @modifyState f@ applies function @f@ to the user state. Suppose -- that we want to count identifiers in a source, we could use the user -- state as: -- -- > expr = Id <$> identifier <* modifyState (+1) modifyState :: Monad m => (u -> u) -> ParsecT s u m () modifyState f = void $ updateParserState (\s -> s { stateUser = f (stateUser s)})