megaparsec/Text/Megaparsec.hs

665 lines
20 KiB
Haskell
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE Safe #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
-- |
-- Module : Text.Megaparsec
-- Copyright : © 2015present Megaparsec contributors
-- © 2007 Paolo Martini
-- © 19992001 Daan Leijen
-- License : FreeBSD
--
-- Maintainer : Mark Karpov <markkarpov92@gmail.com>
-- Stability : experimental
-- Portability : portable
--
-- This module includes everything you need to get started writing a parser.
-- If you are new to Megaparsec and don't know where to begin, take a look
-- at the tutorial <https://markkarpov.com/tutorial/megaparsec.html>.
--
-- In addition to the "Text.Megaparsec" module, which exports and re-exports
-- almost everything that you may need, we advise to import
-- "Text.Megaparsec.Char" if you plan to work with a stream of 'Char' tokens
-- or "Text.Megaparsec.Byte" if you intend to parse binary data.
--
-- It is common to start working with the library by defining a type synonym
-- like this:
--
-- > type Parser = Parsec Void Text
-- > ^ ^
-- > | |
-- > Custom error component Input stream type
--
-- Then you can write type signatures like @Parser 'Int'@—for a parser that
-- returns an 'Int' for example.
--
-- Similarly (since it's known to cause confusion), you should use
-- 'ParseErrorBundle' type parametrized like this:
--
-- > ParseErrorBundle Text Void
-- > ^ ^
-- > | |
-- > Input stream type Custom error component (the same you used in Parser)
--
-- Megaparsec uses some type-level machinery to provide flexibility without
-- compromising on type safety. Thus type signatures are sometimes necessary
-- to avoid ambiguous types. If you're seeing an error message that reads
-- like “Type variable @e0@ is ambiguous …”, you need to give an explicit
-- signature to your parser to resolve the ambiguity. It's a good idea to
-- provide type signatures for all top-level definitions.
module Text.Megaparsec
( -- * Re-exports
-- $reexports
module Text.Megaparsec.Pos,
module Text.Megaparsec.Error,
module Text.Megaparsec.Stream,
module Control.Monad.Combinators,
-- * Data types
State (..),
PosState (..),
Parsec,
ParsecT,
-- * Running parser
parse,
parseMaybe,
parseTest,
runParser,
runParser',
runParserT,
runParserT',
-- * Primitive combinators
MonadParsec (..),
-- * Signaling parse errors
-- $parse-errors
failure,
fancyFailure,
unexpected,
customFailure,
region,
registerParseError,
registerFailure,
registerFancyFailure,
-- * Derivatives of primitive combinators
single,
satisfy,
anySingle,
anySingleBut,
oneOf,
noneOf,
chunk,
(<?>),
match,
takeRest,
atEnd,
-- * Parser state combinators
getInput,
setInput,
getSourcePos,
getOffset,
setOffset,
setParserState,
)
where
import Control.Monad.Combinators
import Control.Monad.Identity
import Data.List.NonEmpty (NonEmpty (..))
import qualified Data.List.NonEmpty as NE
import Data.Maybe (fromJust)
import Data.Set (Set)
import qualified Data.Set as E
import Text.Megaparsec.Class
import Text.Megaparsec.Error
import Text.Megaparsec.Internal
import Text.Megaparsec.Pos
import Text.Megaparsec.State
import Text.Megaparsec.Stream
-- $reexports
--
-- Note that we re-export monadic combinators from
-- "Control.Monad.Combinators" because these are more efficient than
-- 'Applicative'-based ones (†). Thus 'many' and 'some' may clash with the
-- functions from "Control.Applicative". You need to hide the functions like
-- this:
--
-- > import Control.Applicative hiding (many, some)
--
-- † As of Megaparsec 9.7.0 'Control.Applicative.many' and
-- 'Control.Applicative.some' are as efficient as their monadic
-- counterparts.
--
-- Also note that you can import "Control.Monad.Combinators.NonEmpty" if you
-- wish that combinators like 'some' return 'NonEmpty' lists. The module
-- lives in the @parser-combinators@ package (you need at least version
-- /0.4.0/).
--
-- This module is intended to be imported qualified:
--
-- > import qualified Control.Monad.Combinators.NonEmpty as NE
--
-- Other modules of interest are:
--
-- * "Control.Monad.Combinators.Expr" for parsing of expressions.
-- * "Control.Applicative.Permutations" for parsing of permutations
-- phrases.
----------------------------------------------------------------------------
-- Data types
-- | 'Parsec' is a non-transformer variant of the more general 'ParsecT'
-- monad transformer.
type Parsec e s = ParsecT e s Identity
----------------------------------------------------------------------------
-- Running a parser
-- | @'parse' p file input@ runs parser @p@ over 'Identity' (see
-- 'runParserT' if you're using the 'ParsecT' monad transformer; 'parse'
-- itself is just a synonym for 'runParser'). It returns either a
-- 'ParseErrorBundle' ('Left') or a value of type @a@ ('Right').
-- 'errorBundlePretty' can be used to turn 'ParseErrorBundle' into the
-- string representation of the error message. See "Text.Megaparsec.Error"
-- if you need to do more advanced error analysis.
--
-- > main = case parse numbers "" "11,2,43" of
-- > Left bundle -> putStr (errorBundlePretty bundle)
-- > Right xs -> print (sum xs)
-- >
-- > numbers = decimal `sepBy` char ','
--
-- 'parse' is the same as 'runParser'.
parse ::
-- | Parser to run
Parsec e s a ->
-- | Name of source file
String ->
-- | Input for parser
s ->
Either (ParseErrorBundle s e) a
parse = runParser
-- | @'parseMaybe' p input@ runs the parser @p@ on @input@ and returns the
-- result inside 'Just' on success and 'Nothing' on failure. This function
-- also parses 'eof', so if the parser doesn't consume all of its input, it
-- will fail.
--
-- The function is supposed to be useful for lightweight parsing, where
-- error messages (and thus file names) are not important and entire input
-- should be consumed. For example, it can be used for parsing of a single
-- number according to a specification of its format.
parseMaybe :: (Ord e, Stream s) => Parsec e s a -> s -> Maybe a
parseMaybe p s =
case parse (p <* eof) "" s of
Left _ -> Nothing
Right x -> Just x
-- | The expression @'parseTest' p input@ applies the parser @p@ on the
-- input @input@ and prints the result to stdout. Useful for testing.
parseTest ::
( ShowErrorComponent e,
Show a,
VisualStream s,
TraversableStream s
) =>
-- | Parser to run
Parsec e s a ->
-- | Input for parser
s ->
IO ()
parseTest p input =
case parse p "" input of
Left e -> putStr (errorBundlePretty e)
Right x -> print x
-- | @'runParser' p file input@ runs parser @p@ on the input stream of
-- tokens @input@, obtained from source @file@. The @file@ is only used in
-- error messages and may be the empty string. Returns either a
-- 'ParseErrorBundle' ('Left') or a value of type @a@ ('Right').
--
-- > parseFromFile p file = runParser p file <$> readFile file
--
-- 'runParser' is the same as 'parse'.
runParser ::
-- | Parser to run
Parsec e s a ->
-- | Name of source file
String ->
-- | Input for parser
s ->
Either (ParseErrorBundle s e) a
runParser p name s = snd $ runParser' p (initialState name s)
-- | The function is similar to 'runParser' with the difference that it
-- accepts and returns the parser state. This allows us e.g. to specify
-- arbitrary textual position at the beginning of parsing. This is the most
-- general way to run a parser over the 'Identity' monad.
--
-- @since 4.2.0
runParser' ::
-- | Parser to run
Parsec e s a ->
-- | Initial state
State s e ->
(State s e, Either (ParseErrorBundle s e) a)
runParser' p = runIdentity . runParserT' p
-- | @'runParserT' p file input@ runs parser @p@ on the input list of tokens
-- @input@, obtained from source @file@. The @file@ is only used in error
-- messages and may be the empty string. Returns a computation in the
-- underlying monad @m@ that returns either a 'ParseErrorBundle' ('Left') or
-- a value of type @a@ ('Right').
runParserT ::
(Monad m) =>
-- | Parser to run
ParsecT e s m a ->
-- | Name of source file
String ->
-- | Input for parser
s ->
m (Either (ParseErrorBundle s e) a)
runParserT p name s = snd <$> runParserT' p (initialState name s)
-- | This function is similar to 'runParserT', but like 'runParser'' it
-- accepts and returns parser state. This is thus the most general way to
-- run a parser.
--
-- @since 4.2.0
runParserT' ::
(Monad m) =>
-- | Parser to run
ParsecT e s m a ->
-- | Initial state
State s e ->
m (State s e, Either (ParseErrorBundle s e) a)
runParserT' p s = do
(Reply s' _ result) <- runParsecT p s
let toBundle es =
ParseErrorBundle
{ bundleErrors =
NE.sortWith errorOffset es,
bundlePosState = statePosState s
}
return $ case result of
OK _ x ->
case NE.nonEmpty (stateParseErrors s') of
Nothing -> (s', Right x)
Just de -> (s', Left (toBundle de))
Error e ->
(s', Left (toBundle (e :| stateParseErrors s')))
----------------------------------------------------------------------------
-- Signaling parse errors
-- $parse-errors
--
-- The most general function to fail and end parsing is 'parseError'. These
-- are built on top of it. The section also includes functions starting with
-- the @register@ prefix which allow users to register “delayed”
-- 'ParseError's.
-- | Stop parsing and report a trivial 'ParseError'.
--
-- @since 6.0.0
failure ::
(MonadParsec e s m) =>
-- | Unexpected item (if any)
Maybe (ErrorItem (Token s)) ->
-- | Expected items
Set (ErrorItem (Token s)) ->
m a
failure us ps = do
o <- getOffset
parseError (TrivialError o us ps)
{-# INLINE failure #-}
-- | Stop parsing and report a fancy 'ParseError'. To report a single custom
-- parse error, see 'Text.Megaparsec.customFailure'.
--
-- @since 6.0.0
fancyFailure ::
(MonadParsec e s m) =>
-- | Fancy error components
Set (ErrorFancy e) ->
m a
fancyFailure xs = do
o <- getOffset
parseError (FancyError o xs)
{-# INLINE fancyFailure #-}
-- | The parser @'unexpected' item@ fails with an error message telling
-- about unexpected item @item@ without consuming any input.
--
-- > unexpected item = failure (Just item) Set.empty
unexpected :: (MonadParsec e s m) => ErrorItem (Token s) -> m a
unexpected item = failure (Just item) E.empty
{-# INLINE unexpected #-}
-- | Report a custom parse error. For a more general version, see
-- 'fancyFailure'.
--
-- > customFailure = fancyFailure . Set.singleton . ErrorCustom
--
-- @since 6.3.0
customFailure :: (MonadParsec e s m) => e -> m a
customFailure = fancyFailure . E.singleton . ErrorCustom
{-# INLINE customFailure #-}
-- | Specify how to process 'ParseError's that happen inside of this
-- wrapper. This applies to both normal and delayed 'ParseError's.
--
-- As a side-effect of the implementation the inner computation will start
-- with an empty collection of delayed errors and they will be updated and
-- “restored” on the way out of 'region'.
--
-- @since 5.3.0
region ::
(MonadParsec e s m) =>
-- | How to process 'ParseError's
(ParseError s e -> ParseError s e) ->
-- | The “region” that the processing applies to
m a ->
m a
region f m = do
deSoFar <- stateParseErrors <$> getParserState
updateParserState $ \s ->
s {stateParseErrors = []}
r <- observing m
updateParserState $ \s ->
s {stateParseErrors = (f <$> stateParseErrors s) ++ deSoFar}
case r of
Left err -> parseError (f err)
Right x -> return x
{-# INLINEABLE region #-}
-- | Register a 'ParseError' for later reporting. This action does not end
-- parsing and has no effect except for adding the given 'ParseError' to the
-- collection of “delayed” 'ParseError's which will be taken into
-- consideration at the end of parsing. Only if this collection is empty the
-- parser will succeed. This is the main way to report several parse errors
-- at once.
--
-- @since 8.0.0
registerParseError :: (MonadParsec e s m) => ParseError s e -> m ()
registerParseError e = updateParserState $ \s ->
s {stateParseErrors = e : stateParseErrors s}
{-# INLINE registerParseError #-}
-- | Like 'failure', but for delayed 'ParseError's.
--
-- @since 8.0.0
registerFailure ::
(MonadParsec e s m) =>
-- | Unexpected item (if any)
Maybe (ErrorItem (Token s)) ->
-- | Expected items
Set (ErrorItem (Token s)) ->
m ()
registerFailure us ps = do
o <- getOffset
registerParseError (TrivialError o us ps)
{-# INLINE registerFailure #-}
-- | Like 'fancyFailure', but for delayed 'ParseError's.
--
-- @since 8.0.0
registerFancyFailure ::
(MonadParsec e s m) =>
-- | Fancy error components
Set (ErrorFancy e) ->
m ()
registerFancyFailure xs = do
o <- getOffset
registerParseError (FancyError o xs)
{-# INLINE registerFancyFailure #-}
----------------------------------------------------------------------------
-- Derivatives of primitive combinators
-- | @'single' t@ only matches the single token @t@.
--
-- > semicolon = single ';'
--
-- See also: 'token', 'anySingle', 'Text.Megaparsec.Byte.char',
-- 'Text.Megaparsec.Char.char'.
--
-- @since 7.0.0
single ::
(MonadParsec e s m) =>
-- | Token to match
Token s ->
m (Token s)
single t = token testToken expected
where
testToken x = if x == t then Just x else Nothing
expected = E.singleton (Tokens (t :| []))
{-# INLINE single #-}
-- | The parser @'satisfy' f@ succeeds for any token for which the supplied
-- function @f@ returns 'True'.
--
-- > digitChar = satisfy isDigit <?> "digit"
-- > oneOf cs = satisfy (`elem` cs)
--
-- __Performance note__: when you need to parse a single token, it is often
-- a good idea to use 'satisfy' with the right predicate function instead of
-- creating a complex parser using the combinators.
--
-- See also: 'anySingle', 'anySingleBut', 'oneOf', 'noneOf'.
--
-- @since 7.0.0
satisfy ::
(MonadParsec e s m) =>
-- | Predicate to apply
(Token s -> Bool) ->
m (Token s)
satisfy f = token testChar E.empty
where
testChar x = if f x then Just x else Nothing
{-# INLINE satisfy #-}
-- | Parse and return a single token. It's a good idea to attach a 'label'
-- to this parser.
--
-- > anySingle = satisfy (const True)
--
-- See also: 'satisfy', 'anySingleBut'.
--
-- @since 7.0.0
anySingle :: (MonadParsec e s m) => m (Token s)
anySingle = satisfy (const True)
{-# INLINE anySingle #-}
-- | Match any token but the given one. It's a good idea to attach a 'label'
-- to this parser.
--
-- > anySingleBut t = satisfy (/= t)
--
-- See also: 'single', 'anySingle', 'satisfy'.
--
-- @since 7.0.0
anySingleBut ::
(MonadParsec e s m) =>
-- | Token we should not match
Token s ->
m (Token s)
anySingleBut t = satisfy (/= t)
{-# INLINE anySingleBut #-}
-- | @'oneOf' ts@ succeeds if the current token is in the supplied
-- collection of tokens @ts@. Returns the parsed token. Note that this
-- parser cannot automatically generate the “expected” component of error
-- message, so usually you should label it manually with 'label' or ('<?>').
--
-- > oneOf cs = satisfy (`elem` cs)
--
-- See also: 'satisfy'.
--
-- > digit = oneOf ['0'..'9'] <?> "digit"
--
-- __Performance note__: prefer 'satisfy' when you can because it's faster
-- when you have only a couple of tokens to compare to:
--
-- > quoteFast = satisfy (\x -> x == '\'' || x == '\"')
-- > quoteSlow = oneOf "'\""
--
-- @since 7.0.0
oneOf ::
(Foldable f, MonadParsec e s m) =>
-- | Collection of matching tokens
f (Token s) ->
m (Token s)
oneOf cs = satisfy (\x -> elem x cs)
{-# INLINE oneOf #-}
-- | As the dual of 'oneOf', @'noneOf' ts@ succeeds if the current token
-- /not/ in the supplied list of tokens @ts@. Returns the parsed character.
-- Note that this parser cannot automatically generate the “expected”
-- component of error message, so usually you should label it manually with
-- 'label' or ('<?>').
--
-- > noneOf cs = satisfy (`notElem` cs)
--
-- See also: 'satisfy'.
--
-- __Performance note__: prefer 'satisfy' and 'anySingleBut' when you can
-- because it's faster.
--
-- @since 7.0.0
noneOf ::
(Foldable f, MonadParsec e s m) =>
-- | Collection of taken we should not match
f (Token s) ->
m (Token s)
noneOf cs = satisfy (\x -> notElem x cs)
{-# INLINE noneOf #-}
-- | @'chunk' chk@ only matches the chunk @chk@.
--
-- > divOrMod = chunk "div" <|> chunk "mod"
--
-- See also: 'tokens', 'Text.Megaparsec.Char.string',
-- 'Text.Megaparsec.Byte.string'.
--
-- @since 7.0.0
chunk ::
(MonadParsec e s m) =>
-- | Chunk to match
Tokens s ->
m (Tokens s)
chunk = tokens (==)
{-# INLINE chunk #-}
-- | A synonym for 'label' in the form of an operator.
infix 0 <?>
(<?>) :: (MonadParsec e s m) => m a -> String -> m a
(<?>) = flip label
{-# INLINE (<?>) #-}
-- | Return both the result of a parse and a chunk of input that was
-- consumed during parsing. This relies on the change of the 'stateOffset'
-- value to evaluate how many tokens were consumed. If you mess with it
-- manually in the argument parser, prepare for troubles.
--
-- @since 5.3.0
match :: (MonadParsec e s m) => m a -> m (Tokens s, a)
match p = do
o <- getOffset
s <- getInput
r <- p
o' <- getOffset
-- NOTE The 'fromJust' call here should never fail because if the stream
-- is empty before 'p' (the only case when 'takeN_' can return 'Nothing'
-- as per its invariants), (tp' - tp) won't be greater than 0, and in that
-- case 'Just' is guaranteed to be returned as per another invariant of
-- 'takeN_'.
return ((fst . fromJust) (takeN_ (o' - o) s), r)
{-# INLINEABLE match #-}
-- | Consume the rest of the input and return it as a chunk. This parser
-- never fails, but may return the empty chunk.
--
-- > takeRest = takeWhileP Nothing (const True)
--
-- @since 6.0.0
takeRest :: (MonadParsec e s m) => m (Tokens s)
takeRest = takeWhileP Nothing (const True)
{-# INLINE takeRest #-}
-- | Return 'True' when end of input has been reached.
--
-- > atEnd = option False (True <$ hidden eof)
--
-- @since 6.0.0
atEnd :: (MonadParsec e s m) => m Bool
atEnd = option False (True <$ hidden eof)
{-# INLINE atEnd #-}
----------------------------------------------------------------------------
-- Parser state combinators
-- | Return the current input.
getInput :: (MonadParsec e s m) => m s
getInput = stateInput <$> getParserState
{-# INLINE getInput #-}
-- | @'setInput' input@ continues parsing with @input@.
setInput :: (MonadParsec e s m) => s -> m ()
setInput s = updateParserState (\(State _ o pst de) -> State s o pst de)
{-# INLINE setInput #-}
-- | Return the current source position. This function /is not cheap/, do
-- not call it e.g. on matching of every token, that's a bad idea. Still you
-- can use it to get 'SourcePos' to attach to things that you parse.
--
-- The function works under the assumption that we move in the input stream
-- only forwards and never backwards, which is always true unless the user
-- abuses the library.
--
-- @since 7.0.0
getSourcePos :: (TraversableStream s, MonadParsec e s m) => m SourcePos
getSourcePos = do
st <- getParserState
let pst = reachOffsetNoLine (stateOffset st) (statePosState st)
setParserState st {statePosState = pst}
return (pstateSourcePos pst)
{-# INLINE getSourcePos #-}
-- | Get the number of tokens processed so far.
--
-- See also: 'setOffset'.
--
-- @since 7.0.0
getOffset :: (MonadParsec e s m) => m Int
getOffset = stateOffset <$> getParserState
{-# INLINE getOffset #-}
-- | Set the number of tokens processed so far.
--
-- See also: 'getOffset'.
--
-- @since 7.0.0
setOffset :: (MonadParsec e s m) => Int -> m ()
setOffset o = updateParserState $ \(State s _ pst de) ->
State s o pst de
{-# INLINE setOffset #-}
-- | @'setParserState' st@ sets the parser state to @st@.
--
-- See also: 'getParserState', 'updateParserState'.
setParserState :: (MonadParsec e s m) => State s e -> m ()
setParserState st = updateParserState (const st)
{-# INLINE setParserState #-}