mirror of
https://github.com/mrkkrp/megaparsec.git
synced 2024-12-19 06:11:51 +03:00
166 lines
6.2 KiB
Haskell
166 lines
6.2 KiB
Haskell
-- |
|
||
-- Module : Text.MegaParsec.Expr
|
||
-- Copyright : © 1999–2001 Daan Leijen, © 2007 Paolo Martini, © 2015 MegaParsec contributors
|
||
-- License : BSD3
|
||
--
|
||
-- Maintainer : Mark Karpov <markkarpov@opmbx.org>
|
||
-- Stability : provisional
|
||
-- Portability : non-portable
|
||
--
|
||
-- A helper module to parse \"expressions\".
|
||
-- Builds a parser given a table of operators and associativities.
|
||
|
||
module Text.MegaParsec.Expr
|
||
( Assoc (..)
|
||
, Operator (..)
|
||
, OperatorTable
|
||
, buildExpressionParser )
|
||
where
|
||
|
||
import Text.MegaParsec.Combinator
|
||
import Text.MegaParsec.Prim
|
||
|
||
-----------------------------------------------------------
|
||
-- Assoc and OperatorTable
|
||
-----------------------------------------------------------
|
||
|
||
-- | This data type specifies the associativity of operators: left, right
|
||
-- or none.
|
||
|
||
data Assoc = AssocNone
|
||
| AssocLeft
|
||
| AssocRight
|
||
|
||
-- | This data type specifies operators that work on values of type @a@.
|
||
-- An operator is either binary infix or unary prefix or postfix. A
|
||
-- binary operator has also an associated associativity.
|
||
|
||
data Operator s u m a = Infix (ParsecT s u m (a -> a -> a)) Assoc
|
||
| Prefix (ParsecT s u m (a -> a))
|
||
| Postfix (ParsecT s u m (a -> a))
|
||
|
||
-- | An @OperatorTable s u m a@ is a list of @Operator s u m a@
|
||
-- lists. The list is ordered in descending
|
||
-- precedence. All operators in one list have the same precedence (but
|
||
-- may have a different associativity).
|
||
|
||
type OperatorTable s u m a = [[Operator s u m a]]
|
||
|
||
-----------------------------------------------------------
|
||
-- Convert an OperatorTable and basic term parser into
|
||
-- a full fledged expression parser
|
||
-----------------------------------------------------------
|
||
|
||
-- | @buildExpressionParser table term@ builds an expression parser for
|
||
-- terms @term@ with operators from @table@, taking the associativity
|
||
-- and precedence specified in @table@ into account. Prefix and postfix
|
||
-- operators of the same precedence can only occur once (i.e. @--2@ is
|
||
-- not allowed if @-@ is prefix negate). Prefix and postfix operators
|
||
-- of the same precedence associate to the left (i.e. if @++@ is
|
||
-- postfix increment, than @-2++@ equals @-1@, not @-3@).
|
||
--
|
||
-- The @buildExpressionParser@ takes care of all the complexity
|
||
-- involved in building expression parser. Here is an example of an
|
||
-- expression parser that handles prefix signs, postfix increment and
|
||
-- basic arithmetic.
|
||
--
|
||
-- > expr = buildExpressionParser table term
|
||
-- > <?> "expression"
|
||
-- >
|
||
-- > term = parens expr
|
||
-- > <|> natural
|
||
-- > <?> "simple expression"
|
||
-- >
|
||
-- > table = [ [prefix "-" negate, prefix "+" id ]
|
||
-- > , [postfix "++" (+1)]
|
||
-- > , [binary "*" (*) AssocLeft, binary "/" (div) AssocLeft ]
|
||
-- > , [binary "+" (+) AssocLeft, binary "-" (-) AssocLeft ]
|
||
-- > ]
|
||
-- >
|
||
-- > binary name fun assoc = Infix (do{ reservedOp name; return fun }) assoc
|
||
-- > prefix name fun = Prefix (do{ reservedOp name; return fun })
|
||
-- > postfix name fun = Postfix (do{ reservedOp name; return fun })
|
||
|
||
buildExpressionParser :: (Stream s m t)
|
||
=> OperatorTable s u m a
|
||
-> ParsecT s u m a
|
||
-> ParsecT s u m a
|
||
buildExpressionParser operators simpleExpr
|
||
= foldl (makeParser) simpleExpr operators
|
||
where
|
||
makeParser term ops
|
||
= let (rassoc,lassoc,nassoc
|
||
,prefix,postfix) = foldr splitOp ([],[],[],[],[]) ops
|
||
|
||
rassocOp = choice rassoc
|
||
lassocOp = choice lassoc
|
||
nassocOp = choice nassoc
|
||
prefixOp = choice prefix <?> ""
|
||
postfixOp = choice postfix <?> ""
|
||
|
||
ambigious assoc op= try $
|
||
do{ op; fail ("ambiguous use of a " ++ assoc
|
||
++ " associative operator")
|
||
}
|
||
|
||
ambigiousRight = ambigious "right" rassocOp
|
||
ambigiousLeft = ambigious "left" lassocOp
|
||
ambigiousNon = ambigious "non" nassocOp
|
||
|
||
termP = do{ pre <- prefixP
|
||
; x <- term
|
||
; post <- postfixP
|
||
; return (post (pre x))
|
||
}
|
||
|
||
postfixP = postfixOp <|> return id
|
||
|
||
prefixP = prefixOp <|> return id
|
||
|
||
rassocP x = do{ f <- rassocOp
|
||
; y <- do{ z <- termP; rassocP1 z }
|
||
; return (f x y)
|
||
}
|
||
<|> ambigiousLeft
|
||
<|> ambigiousNon
|
||
-- <|> return x
|
||
|
||
rassocP1 x = rassocP x <|> return x
|
||
|
||
lassocP x = do{ f <- lassocOp
|
||
; y <- termP
|
||
; lassocP1 (f x y)
|
||
}
|
||
<|> ambigiousRight
|
||
<|> ambigiousNon
|
||
-- <|> return x
|
||
|
||
lassocP1 x = lassocP x <|> return x
|
||
|
||
nassocP x = do{ f <- nassocOp
|
||
; y <- termP
|
||
; ambigiousRight
|
||
<|> ambigiousLeft
|
||
<|> ambigiousNon
|
||
<|> return (f x y)
|
||
}
|
||
-- <|> return x
|
||
|
||
in do{ x <- termP
|
||
; rassocP x <|> lassocP x <|> nassocP x <|> return x
|
||
<?> "operator"
|
||
}
|
||
|
||
|
||
splitOp (Infix op assoc) (rassoc,lassoc,nassoc,prefix,postfix)
|
||
= case assoc of
|
||
AssocNone -> (rassoc,lassoc,op:nassoc,prefix,postfix)
|
||
AssocLeft -> (rassoc,op:lassoc,nassoc,prefix,postfix)
|
||
AssocRight -> (op:rassoc,lassoc,nassoc,prefix,postfix)
|
||
|
||
splitOp (Prefix op) (rassoc,lassoc,nassoc,prefix,postfix)
|
||
= (rassoc,lassoc,nassoc,op:prefix,postfix)
|
||
|
||
splitOp (Postfix op) (rassoc,lassoc,nassoc,prefix,postfix)
|
||
= (rassoc,lassoc,nassoc,prefix,op:postfix)
|