megaparsec/Text/MegaParsec/Prim.hs
2015-07-28 19:32:19 +06:00

764 lines
26 KiB
Haskell
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- |
-- Module : Text.MegaParsec.Prim
-- Copyright : © 19992001 Daan Leijen, © 2007 Paolo Martini, © 2015 MegaParsec contributors
-- License : BSD3
--
-- Maintainer : Mark Karpov <markkarpov@opmbx.org>
-- Stability : provisional
-- Portability : portable
--
-- The primitive parser combinators.
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_HADDOCK not-home #-}
module Text.MegaParsec.Prim
( unknownError
, sysUnExpectError
, unexpected
, ParsecT
, runParsecT
, mkPT
, Parsec
, Consumed (..)
, Reply (..)
, State (..)
, parsecMap
, parserReturn
, parserBind
, mergeErrorReply
, parserFail
, parserZero
, parserPlus
, (<?>)
, (<|>)
, label
, labels
, lookAhead
, Stream (..)
, tokens
, try
, token
, tokenPrim
, tokenPrimEx
, many
, skipMany
, manyAccum
, runPT
, runP
, runParserT
, runParser
, parse
, parseTest
, getPosition
, getInput
, setPosition
, setInput
, getParserState
, setParserState
, updateParserState
, getState
, putState
, modifyState
, setState
, updateState )
where
import qualified Data.ByteString.Lazy.Char8 as CL
import qualified Data.ByteString.Char8 as C
import qualified Data.Text as Text
import qualified Data.Text.Lazy as TextL
import Control.Monad
import Control.Monad.Identity
import Control.Monad.Trans
import Control.Monad.Reader.Class
import Control.Monad.State.Class
import Control.Monad.Cont.Class
import Control.Monad.Error.Class
import qualified Control.Applicative as A (Applicative (..), Alternative (..))
import Text.MegaParsec.Pos
import Text.MegaParsec.Error
unknownError :: State s u -> ParseError
unknownError state = newErrorUnknown (statePos state)
sysUnExpectError :: String -> SourcePos -> Reply s u a
sysUnExpectError msg pos = Error (newErrorMessage (SysUnExpect msg) pos)
-- | The parser @unexpected msg@ always fails with an unexpected error
-- message @msg@ without consuming any input.
--
-- The parsers 'fail', ('<?>') and @unexpected@ are the three parsers used
-- to generate error messages. Of these, only ('<?>') is commonly used. For
-- an example of the use of @unexpected@, see the definition of
-- 'Text.Parsec.Combinator.notFollowedBy'.
unexpected :: Stream s m t => String -> ParsecT s u m a
unexpected msg = ParsecT $ \s _ _ _ eerr ->
eerr $ newErrorMessage (UnExpect msg) (statePos s)
-- | ParserT monad transformer and Parser type
-- | @ParsecT s u m a@ is a parser with stream type @s@, user state type @u@,
-- underlying monad @m@ and return type @a@. Parsec is strict in the user state.
-- If this is undesirable, simply used a data type like @data Box a = Box a@ and
-- the state type @Box YourStateType@ to add a level of indirection.
newtype ParsecT s u m a
= ParsecT {unParser :: forall b .
State s u
-> (a -> State s u -> ParseError -> m b) -- consumed ok
-> (ParseError -> m b) -- consumed err
-> (a -> State s u -> ParseError -> m b) -- empty ok
-> (ParseError -> m b) -- empty err
-> m b
}
-- | Low-level unpacking of the ParsecT type. To run your parser, please look to
-- runPT, runP, runParserT, runParser and other such functions.
runParsecT :: Monad m => ParsecT s u m a -> State s u -> m (Consumed (m (Reply s u a)))
runParsecT p s = unParser p s cok cerr eok eerr
where cok a s' err = return . Consumed . return $ Ok a s' err
cerr err = return . Consumed . return $ Error err
eok a s' err = return . Empty . return $ Ok a s' err
eerr err = return . Empty . return $ Error err
-- | Low-level creation of the ParsecT type. You really shouldn't have to do this.
mkPT :: Monad m => (State s u -> m (Consumed (m (Reply s u a)))) -> ParsecT s u m a
mkPT k = ParsecT $ \s cok cerr eok eerr -> do
cons <- k s
case cons of
Consumed mrep -> do
rep <- mrep
case rep of
Ok x s' err -> cok x s' err
Error err -> cerr err
Empty mrep -> do
rep <- mrep
case rep of
Ok x s' err -> eok x s' err
Error err -> eerr err
type Parsec s u = ParsecT s u Identity
data Consumed a = Consumed a
| Empty !a
data Reply s u a = Ok a !(State s u) ParseError
| Error ParseError
data State s u = State {
stateInput :: s,
statePos :: !SourcePos,
stateUser :: !u
}
instance Functor Consumed where
fmap f (Consumed x) = Consumed (f x)
fmap f (Empty x) = Empty (f x)
instance Functor (Reply s u) where
fmap f (Ok x s e) = Ok (f x) s e
fmap _ (Error e) = Error e -- XXX
instance Functor (ParsecT s u m) where
fmap f p = parsecMap f p
parsecMap :: (a -> b) -> ParsecT s u m a -> ParsecT s u m b
parsecMap f p
= ParsecT $ \s cok cerr eok eerr ->
unParser p s (cok . f) cerr (eok . f) eerr
instance A.Applicative (ParsecT s u m) where
pure = return
(<*>) = ap -- TODO: Can this be optimized?
instance A.Alternative (ParsecT s u m) where
empty = mzero
(<|>) = mplus
instance Monad (ParsecT s u m) where
return x = parserReturn x
p >>= f = parserBind p f
fail msg = parserFail msg
instance (MonadIO m) => MonadIO (ParsecT s u m) where
liftIO = lift . liftIO
instance (MonadReader r m) => MonadReader r (ParsecT s u m) where
ask = lift ask
local f p = mkPT $ \s -> local f (runParsecT p s)
-- I'm presuming the user might want a separate, non-backtracking
-- state aside from the Parsec user state.
instance (MonadState s m) => MonadState s (ParsecT s' u m) where
get = lift get
put = lift . put
instance (MonadCont m) => MonadCont (ParsecT s u m) where
callCC f = mkPT $ \s ->
callCC $ \c ->
runParsecT (f (\a -> mkPT $ \s' -> c (pack s' a))) s
where pack s a= Empty $ return (Ok a s (unknownError s))
instance (MonadError e m) => MonadError e (ParsecT s u m) where
throwError = lift . throwError
p `catchError` h = mkPT $ \s ->
runParsecT p s `catchError` \e ->
runParsecT (h e) s
parserReturn :: a -> ParsecT s u m a
parserReturn x
= ParsecT $ \s _ _ eok _ ->
eok x s (unknownError s)
parserBind :: ParsecT s u m a -> (a -> ParsecT s u m b) -> ParsecT s u m b
{-# INLINE parserBind #-}
parserBind m k
= ParsecT $ \s cok cerr eok eerr ->
let
-- consumed-okay case for m
mcok x s err =
let
-- if (k x) consumes, those go straigt up
pcok = cok
pcerr = cerr
-- if (k x) doesn't consume input, but is okay,
-- we still return in the consumed continuation
peok x s err' = cok x s (mergeError err err')
-- if (k x) doesn't consume input, but errors,
-- we return the error in the 'consumed-error'
-- continuation
peerr err' = cerr (mergeError err err')
in unParser (k x) s pcok pcerr peok peerr
-- empty-ok case for m
meok x s err =
let
-- in these cases, (k x) can return as empty
pcok = cok
peok x s err' = eok x s (mergeError err err')
pcerr = cerr
peerr err' = eerr (mergeError err err')
in unParser (k x) s pcok pcerr peok peerr
-- consumed-error case for m
mcerr = cerr
-- empty-error case for m
meerr = eerr
in unParser m s mcok mcerr meok meerr
mergeErrorReply :: ParseError -> Reply s u a -> Reply s u a
mergeErrorReply err1 reply -- XXX where to put it?
= case reply of
Ok x state err2 -> Ok x state (mergeError err1 err2)
Error err2 -> Error (mergeError err1 err2)
parserFail :: String -> ParsecT s u m a
parserFail msg
= ParsecT $ \s _ _ _ eerr ->
eerr $ newErrorMessage (Message msg) (statePos s)
instance MonadPlus (ParsecT s u m) where
mzero = parserZero
mplus p1 p2 = parserPlus p1 p2
-- | @parserZero@ always fails without consuming any input. @parserZero@ is defined
-- equal to the 'mzero' member of the 'MonadPlus' class and to the 'Control.Applicative.empty' member
-- of the 'Control.Applicative.Alternative' class.
parserZero :: ParsecT s u m a
parserZero
= ParsecT $ \s _ _ _ eerr ->
eerr $ unknownError s
parserPlus :: ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a
{-# INLINE parserPlus #-}
parserPlus m n
= ParsecT $ \s cok cerr eok eerr ->
let
meerr err =
let
neok y s' err' = eok y s' (mergeError err err')
neerr err' = eerr $ mergeError err err'
in unParser n s cok cerr neok neerr
in unParser m s cok cerr eok meerr
instance MonadTrans (ParsecT s u) where
lift amb = ParsecT $ \s _ _ eok _ -> do
a <- amb
eok a s $ unknownError s
infix 0 <?>
infixr 1 <|>
-- | The parser @p \<?> msg@ behaves as parser @p@, but whenever the
-- parser @p@ fails /without consuming any input/, it replaces expect
-- error messages with the expect error message @msg@.
--
-- This is normally used at the end of a set alternatives where we want
-- to return an error message in terms of a higher level construct
-- rather than returning all possible characters. For example, if the
-- @expr@ parser from the 'try' example would fail, the error
-- message is: '...: expecting expression'. Without the @(\<?>)@
-- combinator, the message would be like '...: expecting \"let\" or
-- letter', which is less friendly.
(<?>) :: (ParsecT s u m a) -> String -> (ParsecT s u m a)
p <?> msg = label p msg
-- | This combinator implements choice. The parser @p \<|> q@ first
-- applies @p@. If it succeeds, the value of @p@ is returned. If @p@
-- fails /without consuming any input/, parser @q@ is tried. This
-- combinator is defined equal to the 'mplus' member of the 'MonadPlus'
-- class and the ('Control.Applicative.<|>') member of 'Control.Applicative.Alternative'.
--
-- The parser is called /predictive/ since @q@ is only tried when
-- parser @p@ didn't consume any input (i.e.. the look ahead is 1).
-- This non-backtracking behaviour allows for both an efficient
-- implementation of the parser combinators and the generation of good
-- error messages.
(<|>) :: (ParsecT s u m a) -> (ParsecT s u m a) -> (ParsecT s u m a)
p1 <|> p2 = mplus p1 p2
-- | A synonym for @\<?>@, but as a function instead of an operator.
label :: ParsecT s u m a -> String -> ParsecT s u m a
label p msg
= labels p [msg]
labels :: ParsecT s u m a -> [String] -> ParsecT s u m a
labels p msgs =
ParsecT $ \s cok cerr eok eerr ->
let eok' x s' error = eok x s' $ if errorIsUnknown error
then error
else setExpectErrors error msgs
eerr' err = eerr $ setExpectErrors err msgs
in unParser p s cok cerr eok' eerr'
where
setExpectErrors err [] = setErrorMessage (Expect "") err
setExpectErrors err [msg] = setErrorMessage (Expect msg) err
setExpectErrors err (msg:msgs)
= foldr (\msg' err' -> addErrorMessage (Expect msg') err')
(setErrorMessage (Expect msg) err) msgs
-- TODO: There should be a stronger statement that can be made about this
-- | An instance of @Stream@ has stream type @s@, underlying monad @m@ and token type @t@ determined by the stream
--
-- Some rough guidelines for a \"correct\" instance of Stream:
--
-- * unfoldM uncons gives the [t] corresponding to the stream
--
-- * A @Stream@ instance is responsible for maintaining the \"position within the stream\" in the stream state @s@. This is trivial unless you are using the monad in a non-trivial way.
class (Monad m) => Stream s m t | s -> t where
uncons :: s -> m (Maybe (t,s))
instance (Monad m) => Stream [tok] m tok where
uncons [] = return $ Nothing
uncons (t:ts) = return $ Just (t,ts)
{-# INLINE uncons #-}
instance (Monad m) => Stream CL.ByteString m Char where
uncons = return . CL.uncons
instance (Monad m) => Stream C.ByteString m Char where
uncons = return . C.uncons
instance (Monad m) => Stream Text.Text m Char where
uncons = return . Text.uncons
{-# INLINE uncons #-}
instance (Monad m) => Stream TextL.Text m Char where
uncons = return . TextL.uncons
{-# INLINE uncons #-}
tokens :: (Stream s m t, Eq t)
=> ([t] -> String) -- Pretty print a list of tokens
-> (SourcePos -> [t] -> SourcePos)
-> [t] -- List of tokens to parse
-> ParsecT s u m [t]
{-# INLINE tokens #-}
tokens _ _ []
= ParsecT $ \s _ _ eok _ ->
eok [] s $ unknownError s
tokens showTokens nextposs tts@(tok:toks)
= ParsecT $ \(State input pos u) cok cerr eok eerr ->
let
errEof = (setErrorMessage (Expect (showTokens tts))
(newErrorMessage (SysUnExpect "") pos))
errExpect x = (setErrorMessage (Expect (showTokens tts))
(newErrorMessage (SysUnExpect (showTokens [x])) pos))
walk [] rs = ok rs
walk (t:ts) rs = do
sr <- uncons rs
case sr of
Nothing -> cerr $ errEof
Just (x,xs) | t == x -> walk ts xs
| otherwise -> cerr $ errExpect x
ok rs = let pos' = nextposs pos tts
s' = State rs pos' u
in cok tts s' (newErrorUnknown pos')
in do
sr <- uncons input
case sr of
Nothing -> eerr $ errEof
Just (x,xs)
| tok == x -> walk toks xs
| otherwise -> eerr $ errExpect x
-- | The parser @try p@ behaves like parser @p@, except that it
-- pretends that it hasn't consumed any input when an error occurs.
--
-- This combinator is used whenever arbitrary look ahead is needed.
-- Since it pretends that it hasn't consumed any input when @p@ fails,
-- the ('<|>') combinator will try its second alternative even when the
-- first parser failed while consuming input.
--
-- The @try@ combinator can for example be used to distinguish
-- identifiers and reserved words. Both reserved words and identifiers
-- are a sequence of letters. Whenever we expect a certain reserved
-- word where we can also expect an identifier we have to use the @try@
-- combinator. Suppose we write:
--
-- > expr = letExpr <|> identifier <?> "expression"
-- >
-- > letExpr = do{ string "let"; ... }
-- > identifier = many1 letter
--
-- If the user writes \"lexical\", the parser fails with: @unexpected
-- \'x\', expecting \'t\' in \"let\"@. Indeed, since the ('<|>') combinator
-- only tries alternatives when the first alternative hasn't consumed
-- input, the @identifier@ parser is never tried (because the prefix
-- \"le\" of the @string \"let\"@ parser is already consumed). The
-- right behaviour can be obtained by adding the @try@ combinator:
--
-- > expr = letExpr <|> identifier <?> "expression"
-- >
-- > letExpr = do{ try (string "let"); ... }
-- > identifier = many1 letter
try :: ParsecT s u m a -> ParsecT s u m a
try p =
ParsecT $ \s cok _ eok eerr ->
unParser p s cok eerr eok eerr
-- | @lookAhead p@ parses @p@ without consuming any input.
--
-- If @p@ fails and consumes some input, so does @lookAhead@. Combine with 'try'
-- if this is undesirable.
lookAhead :: (Stream s m t) => ParsecT s u m a -> ParsecT s u m a
lookAhead p =
ParsecT $ \s _ cerr eok eerr -> do
let eok' a _ _ = eok a s (newErrorUnknown (statePos s))
unParser p s eok' cerr eok' eerr
-- | The parser @token showTok posFromTok testTok@ accepts a token @t@
-- with result @x@ when the function @testTok t@ returns @'Just' x@. The
-- source position of the @t@ should be returned by @posFromTok t@ and
-- the token can be shown using @showTok t@.
--
-- This combinator is expressed in terms of 'tokenPrim'.
-- It is used to accept user defined token streams. For example,
-- suppose that we have a stream of basic tokens tupled with source
-- positions. We can than define a parser that accepts single tokens as:
--
-- > mytoken x
-- > = token showTok posFromTok testTok
-- > where
-- > showTok (pos,t) = show t
-- > posFromTok (pos,t) = pos
-- > testTok (pos,t) = if x == t then Just t else Nothing
token :: (Stream s Identity t)
=> (t -> String) -- ^ Token pretty-printing function.
-> (t -> SourcePos) -- ^ Computes the position of a token.
-> (t -> Maybe a) -- ^ Matching function for the token to parse.
-> Parsec s u a
token showToken tokpos test = tokenPrim showToken nextpos test
where
nextpos _ tok ts = case runIdentity (uncons ts) of
Nothing -> tokpos tok
Just (tok',_) -> tokpos tok'
-- | The parser @tokenPrim showTok nextPos testTok@ accepts a token @t@
-- with result @x@ when the function @testTok t@ returns @'Just' x@. The
-- token can be shown using @showTok t@. The position of the /next/
-- token should be returned when @nextPos@ is called with the current
-- source position @pos@, the current token @t@ and the rest of the
-- tokens @toks@, @nextPos pos t toks@.
--
-- This is the most primitive combinator for accepting tokens. For
-- example, the 'Text.Parsec.Char.char' parser could be implemented as:
--
-- > char c
-- > = tokenPrim showChar nextPos testChar
-- > where
-- > showChar x = "'" ++ x ++ "'"
-- > testChar x = if x == c then Just x else Nothing
-- > nextPos pos x xs = updatePosChar pos x
tokenPrim :: (Stream s m t)
=> (t -> String) -- ^ Token pretty-printing function.
-> (SourcePos -> t -> s -> SourcePos) -- ^ Next position calculating function.
-> (t -> Maybe a) -- ^ Matching function for the token to parse.
-> ParsecT s u m a
{-# INLINE tokenPrim #-}
tokenPrim showToken nextpos test = tokenPrimEx showToken nextpos Nothing test
tokenPrimEx :: (Stream s m t)
=> (t -> String)
-> (SourcePos -> t -> s -> SourcePos)
-> Maybe (SourcePos -> t -> s -> u -> u)
-> (t -> Maybe a)
-> ParsecT s u m a
{-# INLINE tokenPrimEx #-}
tokenPrimEx showToken nextpos Nothing test
= ParsecT $ \(State input pos user) cok cerr eok eerr -> do
r <- uncons input
case r of
Nothing -> eerr $ unexpectError "" pos
Just (c,cs)
-> case test c of
Just x -> let newpos = nextpos pos c cs
newstate = State cs newpos user
in seq newpos $ seq newstate $
cok x newstate (newErrorUnknown newpos)
Nothing -> eerr $ unexpectError (showToken c) pos
tokenPrimEx showToken nextpos (Just nextState) test
= ParsecT $ \(State input pos user) cok cerr eok eerr -> do
r <- uncons input
case r of
Nothing -> eerr $ unexpectError "" pos
Just (c,cs)
-> case test c of
Just x -> let newpos = nextpos pos c cs
newUser = nextState pos c cs user
newstate = State cs newpos newUser
in seq newpos $ seq newstate $
cok x newstate $ newErrorUnknown newpos
Nothing -> eerr $ unexpectError (showToken c) pos
unexpectError msg pos = newErrorMessage (SysUnExpect msg) pos
-- | @many p@ applies the parser @p@ /zero/ or more times. Returns a
-- list of the returned values of @p@.
--
-- > identifier = do{ c <- letter
-- > ; cs <- many (alphaNum <|> char '_')
-- > ; return (c:cs)
-- > }
many :: ParsecT s u m a -> ParsecT s u m [a]
many p
= do xs <- manyAccum (:) p
return (reverse xs)
-- | @skipMany p@ applies the parser @p@ /zero/ or more times, skipping
-- its result.
--
-- > spaces = skipMany space
skipMany :: ParsecT s u m a -> ParsecT s u m ()
skipMany p
= do manyAccum (\_ _ -> []) p
return ()
manyAccum :: (a -> [a] -> [a])
-> ParsecT s u m a
-> ParsecT s u m [a]
manyAccum acc p =
ParsecT $ \s cok cerr eok eerr ->
let walk xs x s' err =
unParser p s'
(seq xs $ walk $ acc x xs) -- consumed-ok
cerr -- consumed-err
manyErr -- empty-ok
(\e -> cok (acc x xs) s' e) -- empty-err
in unParser p s (walk []) cerr manyErr (\e -> eok [] s e)
manyErr = error "Text.ParserCombinators.Parsec.Prim.many: combinator 'many' is applied to a parser that accepts an empty string."
-- < Running a parser: monadic (runPT) and pure (runP)
runPT :: (Stream s m t)
=> ParsecT s u m a -> u -> SourceName -> s -> m (Either ParseError a)
runPT p u name s
= do res <- runParsecT p (State s (initialPos name) u)
r <- parserReply res
case r of
Ok x _ _ -> return (Right x)
Error err -> return (Left err)
where
parserReply res
= case res of
Consumed r -> r
Empty r -> r
runP :: (Stream s Identity t)
=> Parsec s u a -> u -> SourceName -> s -> Either ParseError a
runP p u name s = runIdentity $ runPT p u name s
-- | The most general way to run a parser. @runParserT p state filePath
-- input@ runs parser @p@ on the input list of tokens @input@,
-- obtained from source @filePath@ with the initial user state @st@.
-- The @filePath@ is only used in error messages and may be the empty
-- string. Returns a computation in the underlying monad @m@ that return either a 'ParseError' ('Left') or a
-- value of type @a@ ('Right').
runParserT :: (Stream s m t)
=> ParsecT s u m a -> u -> SourceName -> s -> m (Either ParseError a)
runParserT = runPT
-- | The most general way to run a parser over the Identity monad. @runParser p state filePath
-- input@ runs parser @p@ on the input list of tokens @input@,
-- obtained from source @filePath@ with the initial user state @st@.
-- The @filePath@ is only used in error messages and may be the empty
-- string. Returns either a 'ParseError' ('Left') or a
-- value of type @a@ ('Right').
--
-- > parseFromFile p fname
-- > = do{ input <- readFile fname
-- > ; return (runParser p () fname input)
-- > }
runParser :: (Stream s Identity t)
=> Parsec s u a -> u -> SourceName -> s -> Either ParseError a
runParser = runP
-- | @parse p filePath input@ runs a parser @p@ over Identity without user
-- state. The @filePath@ is only used in error messages and may be the
-- empty string. Returns either a 'ParseError' ('Left')
-- or a value of type @a@ ('Right').
--
-- > main = case (parse numbers "" "11, 2, 43") of
-- > Left err -> print err
-- > Right xs -> print (sum xs)
-- >
-- > numbers = commaSep integer
parse :: (Stream s Identity t)
=> Parsec s () a -> SourceName -> s -> Either ParseError a
parse p = runP p ()
-- | The expression @parseTest p input@ applies a parser @p@ against
-- input @input@ and prints the result to stdout. Used for testing
-- parsers.
parseTest :: (Stream s Identity t, Show a)
=> Parsec s () a -> s -> IO ()
parseTest p input
= case parse p "" input of
Left err -> do putStr "parse error at "
print err
Right x -> print x
-- < Parser state combinators
-- | Returns the current source position. See also 'SourcePos'.
getPosition :: (Monad m) => ParsecT s u m SourcePos
getPosition = do state <- getParserState
return (statePos state)
-- | Returns the current input
getInput :: (Monad m) => ParsecT s u m s
getInput = do state <- getParserState
return (stateInput state)
-- | @setPosition pos@ sets the current source position to @pos@.
setPosition :: (Monad m) => SourcePos -> ParsecT s u m ()
setPosition pos
= do updateParserState (\(State input _ user) -> State input pos user)
return ()
-- | @setInput input@ continues parsing with @input@. The 'getInput' and
-- @setInput@ functions can for example be used to deal with #include
-- files.
setInput :: (Monad m) => s -> ParsecT s u m ()
setInput input
= do updateParserState (\(State _ pos user) -> State input pos user)
return ()
-- | Returns the full parser state as a 'State' record.
getParserState :: (Monad m) => ParsecT s u m (State s u)
getParserState = updateParserState id
-- | @setParserState st@ set the full parser state to @st@.
setParserState :: (Monad m) => State s u -> ParsecT s u m (State s u)
setParserState st = updateParserState (const st)
-- | @updateParserState f@ applies function @f@ to the parser state.
updateParserState :: (State s u -> State s u) -> ParsecT s u m (State s u)
updateParserState f =
ParsecT $ \s _ _ eok _ ->
let s' = f s
in eok s' s' $ unknownError s'
-- < User state combinators
-- | Returns the current user state.
getState :: (Monad m) => ParsecT s u m u
getState = stateUser `liftM` getParserState
-- | @putState st@ set the user state to @st@.
putState :: (Monad m) => u -> ParsecT s u m ()
putState u = do updateParserState $ \s -> s { stateUser = u }
return ()
-- | @modifyState f@ applies function @f@ to the user state. Suppose
-- that we want to count identifiers in a source, we could use the user
-- state as:
--
-- > expr = do{ x <- identifier
-- > ; modifyState (+1)
-- > ; return (Id x)
-- > }
modifyState :: (Monad m) => (u -> u) -> ParsecT s u m ()
modifyState f = do updateParserState $ \s -> s { stateUser = f (stateUser s) }
return ()
-- XXX Compat
-- | An alias for putState for backwards compatibility.
setState :: (Monad m) => u -> ParsecT s u m ()
setState = putState
-- | An alias for modifyState for backwards compatibility.
updateState :: (Monad m) => (u -> u) -> ParsecT s u m ()
updateState = modifyState