mirror of
https://github.com/mrkkrp/megaparsec.git
synced 2024-12-18 13:51:58 +03:00
a3254f5371
This turns out that it's easier for readers to lookup the list of extensions in current file than go to Cabal file.
189 lines
6.4 KiB
Haskell
189 lines
6.4 KiB
Haskell
--
|
||
-- QuickCheck tests for Megaparsec's expression parsers.
|
||
--
|
||
-- Copyright © 2015–2016 Megaparsec contributors
|
||
--
|
||
-- Redistribution and use in source and binary forms, with or without
|
||
-- modification, are permitted provided that the following conditions are
|
||
-- met:
|
||
--
|
||
-- * Redistributions of source code must retain the above copyright notice,
|
||
-- this list of conditions and the following disclaimer.
|
||
--
|
||
-- * Redistributions in binary form must reproduce the above copyright
|
||
-- notice, this list of conditions and the following disclaimer in the
|
||
-- documentation and/or other materials provided with the distribution.
|
||
--
|
||
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS “AS IS” AND ANY
|
||
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
-- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
-- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
-- OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
-- HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
-- STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
-- ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
-- POSSIBILITY OF SUCH DAMAGE.
|
||
|
||
{-# LANGUAGE CPP #-}
|
||
{-# LANGUAGE FlexibleContexts #-}
|
||
|
||
module Expr (tests) where
|
||
|
||
import Control.Applicative (some, (<|>))
|
||
import Data.Char (isDigit, digitToInt)
|
||
|
||
import Test.Framework
|
||
import Test.Framework.Providers.QuickCheck2 (testProperty)
|
||
import Test.QuickCheck
|
||
|
||
import Text.Megaparsec.Char
|
||
import Text.Megaparsec.Combinator
|
||
import Text.Megaparsec.Expr
|
||
import Text.Megaparsec.Prim
|
||
|
||
import Util
|
||
|
||
#if !MIN_VERSION_base(4,8,0)
|
||
import Control.Applicative ((<$>), (<*), (<*>), (*>), pure)
|
||
#endif
|
||
|
||
tests :: Test
|
||
tests = testGroup "Expression parsers"
|
||
[ testProperty "correctness of expression parser" prop_correctness
|
||
, testProperty "error message on empty input" prop_empty_error
|
||
, testProperty "error message on missing term" prop_missing_term
|
||
, testProperty "error message on missing op" prop_missing_op ]
|
||
|
||
-- Algebraic structures to build abstract syntax tree of our expression.
|
||
|
||
data Node
|
||
= Val Integer -- ^ literal value
|
||
| Neg Node -- ^ negation (prefix unary)
|
||
| Fac Node -- ^ factorial (postfix unary)
|
||
| Mod Node Node -- ^ modulo
|
||
| Sum Node Node -- ^ summation (addition)
|
||
| Sub Node Node -- ^ subtraction
|
||
| Pro Node Node -- ^ product
|
||
| Div Node Node -- ^ division
|
||
| Exp Node Node -- ^ exponentiation
|
||
deriving (Eq, Show)
|
||
|
||
instance Enum Node where
|
||
fromEnum (Val _) = 0
|
||
fromEnum (Neg _) = 0
|
||
fromEnum (Fac _) = 0
|
||
fromEnum (Mod _ _) = 0
|
||
fromEnum (Exp _ _) = 1
|
||
fromEnum (Pro _ _) = 2
|
||
fromEnum (Div _ _) = 2
|
||
fromEnum (Sum _ _) = 3
|
||
fromEnum (Sub _ _) = 3
|
||
toEnum _ = error "Oops!"
|
||
|
||
instance Ord Node where
|
||
x `compare` y = fromEnum x `compare` fromEnum y
|
||
|
||
showNode :: Node -> String
|
||
showNode (Val x) = show x
|
||
showNode n@(Neg x) = "-" ++ showGT n x
|
||
showNode n@(Fac x) = showGT n x ++ "!"
|
||
showNode n@(Mod x y) = showGE n x ++ " % " ++ showGE n y
|
||
showNode n@(Sum x y) = showGT n x ++ " + " ++ showGE n y
|
||
showNode n@(Sub x y) = showGT n x ++ " - " ++ showGE n y
|
||
showNode n@(Pro x y) = showGT n x ++ " * " ++ showGE n y
|
||
showNode n@(Div x y) = showGT n x ++ " / " ++ showGE n y
|
||
showNode n@(Exp x y) = showGE n x ++ " ^ " ++ showGT n y
|
||
|
||
showGT :: Node -> Node -> String
|
||
showGT parent node = (if node > parent then showCmp else showNode) node
|
||
|
||
showGE :: Node -> Node -> String
|
||
showGE parent node = (if node >= parent then showCmp else showNode) node
|
||
|
||
showCmp :: Node -> String
|
||
showCmp node = (if fromEnum node == 0 then showNode else inParens) node
|
||
|
||
inParens :: Node -> String
|
||
inParens x = "(" ++ showNode x ++ ")"
|
||
|
||
instance Arbitrary Node where
|
||
arbitrary = sized arbitraryN0
|
||
|
||
arbitraryN0 :: Int -> Gen Node
|
||
arbitraryN0 n = frequency [ (1, Mod <$> leaf <*> leaf)
|
||
, (9, arbitraryN1 n) ]
|
||
where leaf = arbitraryN1 (n `div` 2)
|
||
|
||
arbitraryN1 :: Int -> Gen Node
|
||
arbitraryN1 n =
|
||
frequency [ (1, Neg <$> arbitraryN2 n)
|
||
, (1, Fac <$> arbitraryN2 n)
|
||
, (7, arbitraryN2 n)]
|
||
|
||
arbitraryN2 :: Int -> Gen Node
|
||
arbitraryN2 0 = Val . getNonNegative <$> arbitrary
|
||
arbitraryN2 n = elements [Sum,Sub,Pro,Div,Exp] <*> leaf <*> leaf
|
||
where leaf = arbitraryN0 (n `div` 2)
|
||
|
||
-- Some helpers are put here since we don't want to depend on
|
||
-- "Text.Megaparsec.Lexer".
|
||
|
||
lexeme :: MonadParsec s m Char => m a -> m a
|
||
lexeme p = p <* hidden space
|
||
|
||
symbol :: MonadParsec s m Char => String -> m String
|
||
symbol = lexeme . string
|
||
|
||
parens :: MonadParsec s m Char => m a -> m a
|
||
parens = between (symbol "(") (symbol ")")
|
||
|
||
integer :: MonadParsec s m Char => m Integer
|
||
integer = lexeme (read <$> some digitChar <?> "integer")
|
||
|
||
-- Here we use table of operators that makes use of all features of
|
||
-- 'makeExprParser'. Then we generate abstract syntax tree (AST) of complex
|
||
-- but valid expressions and render them to get their textual
|
||
-- representation.
|
||
|
||
expr :: MonadParsec s m Char => m Node
|
||
expr = makeExprParser term table
|
||
|
||
term :: MonadParsec s m Char => m Node
|
||
term = parens expr <|> (Val <$> integer) <?> "term"
|
||
|
||
table :: MonadParsec s m Char => [[Operator m Node]]
|
||
table = [ [ Prefix (symbol "-" *> pure Neg)
|
||
, Postfix (symbol "!" *> pure Fac)
|
||
, InfixN (symbol "%" *> pure Mod) ]
|
||
, [ InfixR (symbol "^" *> pure Exp) ]
|
||
, [ InfixL (symbol "*" *> pure Pro)
|
||
, InfixL (symbol "/" *> pure Div) ]
|
||
, [ InfixL (symbol "+" *> pure Sum)
|
||
, InfixL (symbol "-" *> pure Sub)] ]
|
||
|
||
prop_correctness :: Node -> Property
|
||
prop_correctness node = checkParser expr (Right node) (showNode node)
|
||
|
||
prop_empty_error :: Property
|
||
prop_empty_error = checkParser expr r s
|
||
where r = posErr 0 s [uneEof, exSpec "term"]
|
||
s = ""
|
||
|
||
prop_missing_term :: Char -> Property
|
||
prop_missing_term c = checkParser expr r s
|
||
where r | c `elem` "-(" = posErr 1 s [uneEof, exSpec "term"]
|
||
| isDigit c = Right . Val . fromIntegral . digitToInt $ c
|
||
| otherwise = posErr 0 s [uneCh c, exSpec "term"]
|
||
s = pure c
|
||
|
||
prop_missing_op :: Node -> Node -> Property
|
||
prop_missing_op a b = checkParser expr r s
|
||
where a' = inParens a
|
||
c = s !! n
|
||
n = succ $ length a'
|
||
r | c == '-' = Right $ Sub a b
|
||
| otherwise = posErr n s [uneCh c, exEof, exSpec "operator"]
|
||
s = a' ++ " " ++ inParens b
|