megaparsec/tests/Text/Megaparsec/ExprSpec.hs
2016-09-24 19:32:50 +03:00

188 lines
6.6 KiB
Haskell
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

--
-- Tests for Megaparsec's expression parsers.
--
-- Copyright © 20152016 Megaparsec contributors
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:
--
-- * Redistributions of source code must retain the above copyright notice,
-- this list of conditions and the following disclaimer.
--
-- * Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in the
-- documentation and/or other materials provided with the distribution.
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS “AS IS” AND ANY
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
-- OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
-- HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
-- STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-- ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-- POSSIBILITY OF SUCH DAMAGE.
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
module Text.Megaparsec.ExprSpec (spec) where
import Control.Applicative (some, (<|>))
import Data.Monoid ((<>))
import Test.Hspec
import Test.Hspec.Megaparsec
import Test.Hspec.Megaparsec.AdHoc
import Test.QuickCheck
import Text.Megaparsec.Char
import Text.Megaparsec.Combinator
import Text.Megaparsec.Expr
import Text.Megaparsec.Prim
#if !MIN_VERSION_base(4,8,0)
import Control.Applicative ((<$>), (<*), (<*>), (*>), pure)
#endif
spec :: Spec
spec =
describe "makeExprParser" $ do
context "when given valid rendered AST" $
it "can parse it back" $
property $ \node -> do
let s = showNode node
prs expr s `shouldParse` node
prs' expr s `succeedsLeaving` ""
context "when stream in empty" $
it "signals correct parse error" $
prs (expr <* eof) "" `shouldFailWith` err posI (ueof <> elabel "term")
context "when term is missing" $
it "signals correct parse error" $ do
let p = expr <* eof
n = 1 :: Integer
prs p "-" `shouldFailWith` err (posN n "-") (ueof <> elabel "term")
prs p "(" `shouldFailWith` err (posN n "(") (ueof <> elabel "term")
prs p "*" `shouldFailWith` err posI (utok '*' <> elabel "term")
context "operator is missing" $
it "signals correct parse error" $
property $ \a b -> do
let p = expr <* eof
a' = inParens a
n = length a' + 1
s = a' ++ " " ++ inParens b
c = s !! n
if c == '-'
then prs p s `shouldParse` Sub a b
else prs p s `shouldFailWith`
err (posN n s) (utok c <> eeof <> elabel "operator")
-- Algebraic structures to build abstract syntax tree of our expression.
data Node
= Val Integer -- ^ literal value
| Neg Node -- ^ negation (prefix unary)
| Fac Node -- ^ factorial (postfix unary)
| Mod Node Node -- ^ modulo
| Sum Node Node -- ^ summation (addition)
| Sub Node Node -- ^ subtraction
| Pro Node Node -- ^ product
| Div Node Node -- ^ division
| Exp Node Node -- ^ exponentiation
deriving (Eq, Show)
instance Enum Node where
fromEnum (Val _) = 0
fromEnum (Neg _) = 0
fromEnum (Fac _) = 0
fromEnum (Mod _ _) = 0
fromEnum (Exp _ _) = 1
fromEnum (Pro _ _) = 2
fromEnum (Div _ _) = 2
fromEnum (Sum _ _) = 3
fromEnum (Sub _ _) = 3
toEnum _ = error "Oops!"
instance Ord Node where
x `compare` y = fromEnum x `compare` fromEnum y
showNode :: Node -> String
showNode (Val x) = show x
showNode n@(Neg x) = "-" ++ showGT n x
showNode n@(Fac x) = showGT n x ++ "!"
showNode n@(Mod x y) = showGE n x ++ " % " ++ showGE n y
showNode n@(Sum x y) = showGT n x ++ " + " ++ showGE n y
showNode n@(Sub x y) = showGT n x ++ " - " ++ showGE n y
showNode n@(Pro x y) = showGT n x ++ " * " ++ showGE n y
showNode n@(Div x y) = showGT n x ++ " / " ++ showGE n y
showNode n@(Exp x y) = showGE n x ++ " ^ " ++ showGT n y
showGT :: Node -> Node -> String
showGT parent node = (if node > parent then showCmp else showNode) node
showGE :: Node -> Node -> String
showGE parent node = (if node >= parent then showCmp else showNode) node
showCmp :: Node -> String
showCmp node = (if fromEnum node == 0 then showNode else inParens) node
inParens :: Node -> String
inParens x = "(" ++ showNode x ++ ")"
instance Arbitrary Node where
arbitrary = sized arbitraryN0
arbitraryN0 :: Int -> Gen Node
arbitraryN0 n = frequency [ (1, Mod <$> leaf <*> leaf)
, (9, arbitraryN1 n) ]
where leaf = arbitraryN1 (n `div` 2)
arbitraryN1 :: Int -> Gen Node
arbitraryN1 n =
frequency [ (1, Neg <$> arbitraryN2 n)
, (1, Fac <$> arbitraryN2 n)
, (7, arbitraryN2 n)]
arbitraryN2 :: Int -> Gen Node
arbitraryN2 0 = Val . getNonNegative <$> arbitrary
arbitraryN2 n = elements [Sum,Sub,Pro,Div,Exp] <*> leaf <*> leaf
where leaf = arbitraryN0 (n `div` 2)
-- Some helpers are put here since we don't want to depend on
-- "Text.Megaparsec.Lexer".
lexeme :: (MonadParsec e s m, Token s ~ Char) => m a -> m a
lexeme p = p <* hidden space
symbol :: (MonadParsec e s m, Token s ~ Char) => String -> m String
symbol = lexeme . string
parens :: (MonadParsec e s m, Token s ~ Char) => m a -> m a
parens = between (symbol "(") (symbol ")")
integer :: (MonadParsec e s m, Token s ~ Char) => m Integer
integer = lexeme (read <$> some digitChar <?> "integer")
-- Here we use a table of operators that makes use of all features of
-- 'makeExprParser'. Then we generate abstract syntax tree (AST) of complex
-- but valid expressions and render them to get their textual
-- representation.
expr :: (MonadParsec e s m, Token s ~ Char) => m Node
expr = makeExprParser term table
term :: (MonadParsec e s m, Token s ~ Char) => m Node
term = parens expr <|> (Val <$> integer) <?> "term"
table :: (MonadParsec e s m, Token s ~ Char) => [[Operator m Node]]
table = [ [ Prefix (symbol "-" *> pure Neg)
, Postfix (symbol "!" *> pure Fac)
, InfixN (symbol "%" *> pure Mod) ]
, [ InfixR (symbol "^" *> pure Exp) ]
, [ InfixL (symbol "*" *> pure Pro)
, InfixL (symbol "/" *> pure Div) ]
, [ InfixL (symbol "+" *> pure Sum)
, InfixL (symbol "-" *> pure Sub)] ]