megaparsec/tests/Expr.hs
2015-10-03 17:00:29 +02:00

171 lines
5.6 KiB
Haskell

-- -*- Mode: Haskell; -*-
--
-- QuickCheck tests for Megaparsec's expression parsers.
--
-- Copyright © 2015 Megaparsec contributors
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:
--
-- * Redistributions of source code must retain the above copyright notice,
-- this list of conditions and the following disclaimer.
--
-- * Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in the
-- documentation and/or other materials provided with the distribution.
--
-- This software is provided by the copyright holders "as is" and any
-- express or implied warranties, including, but not limited to, the implied
-- warranties of merchantability and fitness for a particular purpose are
-- disclaimed. In no event shall the copyright holders be liable for any
-- direct, indirect, incidental, special, exemplary, or consequential
-- damages (including, but not limited to, procurement of substitute goods
-- or services; loss of use, data, or profits; or business interruption)
-- however caused and on any theory of liability, whether in contract,
-- strict liability, or tort (including negligence or otherwise) arising in
-- any way out of the use of this software, even if advised of the
-- possibility of such damage.
module Expr (tests) where
import Control.Applicative (some, (<|>))
#if MIN_VERSION_base(4,7,0)
import Data.Bool (bool)
#endif
import Test.Framework
import Test.Framework.Providers.QuickCheck2 (testProperty)
import Test.QuickCheck
import Text.Megaparsec.Char
import Text.Megaparsec.Combinator
import Text.Megaparsec.Expr
import Text.Megaparsec.Prim
import Util
#if !MIN_VERSION_base(4,8,0)
import Control.Applicative ((<$>), (<*), (<*>), (*>), pure)
#endif
#if !MIN_VERSION_base(4,7,0)
bool :: a -> a -> Bool -> a
bool f _ False = f
bool _ t True = t
#endif
tests :: Test
tests = testGroup "Expression parsers"
[ testProperty "correctness of expression parser" prop_correctness ]
-- Algebraic structures to build abstract syntax tree of our expression.
data Node
= Val Integer -- ^ literal value
| Neg Node -- ^ negation (prefix unary)
| Fac Node -- ^ factorial (postfix unary)
| Mod Node Node -- ^ modulo
| Sum Node Node -- ^ summation (addition)
| Sub Node Node -- ^ subtraction
| Pro Node Node -- ^ product
| Div Node Node -- ^ division
| Exp Node Node -- ^ exponentiation
deriving (Eq, Show)
instance Enum Node where
fromEnum (Val _) = 0
fromEnum (Neg _) = 0
fromEnum (Fac _) = 0
fromEnum (Mod _ _) = 0
fromEnum (Exp _ _) = 1
fromEnum (Pro _ _) = 2
fromEnum (Div _ _) = 2
fromEnum (Sum _ _) = 3
fromEnum (Sub _ _) = 3
toEnum _ = error "Oops!"
instance Ord Node where
x `compare` y = fromEnum x `compare` fromEnum y
showNode :: Node -> String
showNode (Val x) = show x
showNode n@(Neg x) = "-" ++ showGT n x
showNode n@(Fac x) = showGT n x ++ "!"
showNode n@(Mod x y) = showGE n x ++ " % " ++ showGE n y
showNode n@(Sum x y) = showGT n x ++ " + " ++ showGE n y
showNode n@(Sub x y) = showGT n x ++ " - " ++ showGE n y
showNode n@(Pro x y) = showGT n x ++ " * " ++ showGE n y
showNode n@(Div x y) = showGT n x ++ " / " ++ showGE n y
showNode n@(Exp x y) = showGE n x ++ " ^ " ++ showGT n y
showGT :: Node -> Node -> String
showGT parent node = bool showNode showCmp (node > parent) node
showGE :: Node -> Node -> String
showGE parent node = bool showNode showCmp (node >= parent) node
showCmp :: Node -> String
showCmp node = bool inParens showNode (fromEnum node == 0) node
inParens :: Node -> String
inParens x = "(" ++ showNode x ++ ")"
instance Arbitrary Node where
arbitrary = sized arbitraryN0
arbitraryN0 :: Int -> Gen Node
arbitraryN0 n = frequency [ (1, Mod <$> leaf <*> leaf)
, (9, arbitraryN1 n) ]
where leaf = arbitraryN1 (n `div` 2)
arbitraryN1 :: Int -> Gen Node
arbitraryN1 n =
frequency [ (1, Neg <$> arbitraryN2 n)
, (1, Fac <$> arbitraryN2 n)
, (7, arbitraryN2 n)]
arbitraryN2 :: Int -> Gen Node
arbitraryN2 0 = Val . getNonNegative <$> arbitrary
arbitraryN2 n = elements [Sum,Sub,Pro,Div,Exp] <*> leaf <*> leaf
where leaf = arbitraryN0 (n `div` 2)
-- Some helpers put here since we don't want to depend on
-- "Text.Megaparsec.Lexer".
lexeme :: MonadParsec s m Char => m a -> m a
lexeme p = p <* hidden space
symbol :: MonadParsec s m Char => String -> m String
symbol = lexeme . string
parens :: MonadParsec s m Char => m a -> m a
parens = between (symbol "(") (symbol ")")
integer :: MonadParsec s m Char => m Integer
integer = lexeme (read <$> some digitChar <?> "integer")
-- Here we use table of operators that makes use of all features of
-- 'makeExprParser'. Then we generate abstract syntax tree (AST) of complex
-- but valid expressions and render them to get their textual
-- representation.
expr :: MonadParsec s m Char => m Node
expr = makeExprParser term table <?> "expression"
term :: MonadParsec s m Char => m Node
term = parens expr <|> (Val <$> integer) <?> "term"
table :: MonadParsec s m Char => [[Operator m Node]]
table = [ [ Prefix (symbol "-" *> pure Neg)
, Postfix (symbol "!" *> pure Fac)
, InfixN (symbol "%" *> pure Mod) ]
, [ InfixR (symbol "^" *> pure Exp) ]
, [ InfixL (symbol "*" *> pure Pro)
, InfixL (symbol "/" *> pure Div) ]
, [ InfixL (symbol "+" *> pure Sum)
, InfixL (symbol "-" *> pure Sub)] ]
prop_correctness :: Node -> Property
prop_correctness node = checkParser expr (Right node) (showNode node)